Полупроводниковые коммутационные аппараты

Введение

| | |
| :--- | :--- | :--- |

Полупроводниковые коммутационные аппараты

Введение

Полупроводниковые коммутационные аппараты SIRIUS 3RF2

3-фазный полупроводниковый контактор и 1-фазное полупроводниковое реле
Полупроводниковые коммутационные аппараты SIRIUS 3RF2 надежно коммутируют различные нагрузки в сетях переменного тока 50 и 60 Гц.
Полупроводниковые коммутационные аппараты для активных нагрузок:

- Полупроводниковые реле
- Полупроводниковые контакторы
- Функциональные модули

Полупроводниковые коммутационные аппараты для коммутации электродвигателей:

- Полупроводниковые контакторы прямого пуска
- Полупроводниковые реверсивные контакторы

Очень продолжительный срок службы
При повышенных частотах коммутаций обычные электромеханические аппараты зачастую не справляются со своими задачами. Высокая частота коммутаций ведет к росту отказов и сокращению интервалов между техническими обслуживаниями и ремонтами. Выходом является новейшее поколение наших полупроводниковых коммутационных аппаратов SIRIUS 3RF2, в которые входят полупроводниковые реле и контакторы с исключительно продолжительным сроком службы даже в самых жестких условиях эксплуатации, в том числе и в местах, чувствительных к постороннему шуму.
Эффективность, многократно подтвержденная практикой
Полупроводниковые коммутационные аппараты SIRIUS 3RF2 широко применяются в промышленности. Они используются для частых коммутаций преимущественно активных нагрузок, а так же для управления электромагнитными клапанами и двигателями в подъемно-транспортном оборудовании. Наряду с применением в областях с высокой частотой коммутаций, полупроводниковые коммутационные аппараты, благодаря бесшумной работе, широко используются, например, в административных и лечебных учреждениях.
Надежное решение для широкого круга задач
В отличие от механических коммутационных аппаратов, полупроводниковые коммутационные аппараты SIRIUS 3RF2 характеризуются значительно большим сроком службы. Они коммутируют исключительно точно, надежно и, что особенно важно, не подвержены износу. Различные способы подключений и широкий диапазон напряжений управления делают аппараты SIRIUS 3RF2 универсальными в применении. В зависимости от индивидуальных требований эксплуатации возможности наших компактных аппаратов расширяются дополнительными функциональными модулями.

Идеальны для применения в системах управления нагревом
Полупроводниковые коммутационные аппараты 3RF2 могут применяться, например, в системе управления нагревом SIPLUS HCS300I (модульная система управления нагревом в производстве синтетических материалов). Полупроводниковые коммутационные аппараты подключаются к модулям цифровых выходов системы HCS3001. Каждый базовый аппарат может работать с четырьмя 6-канальными модулями цифровых выходов для управления полупроводниковыми контакторами и четырьмя 4-канальными модулями контроля температуры. Нагрузки могут контролироваться с помощью модулей контроля тока или тока и напряжения. Обмен данными с вышестоящей системой управления происходит по шине Profibus DP.
См. также www.siemens.de/heizungssteuerung

Система управление нагревом SIPLUS

SIRIUS 3RF3 для коммутации электродвигателей

Повышенная частота коммутаций не является проблемой для полупроводниковых контакторов SIRIUS для коммутации электродвигателей. Они надёжно коммутируют стандартные асинхронные 3 -фазные электродвигатели до 7,5 кВт. Полупроводниковые реверсивные контакторы обеспечивают при этом смену направления вращения электродвигателя.
Оба исполнения легко комбинируются с другими компонентами модульной системы SIRIUS. Полупроводниковые коммутационные аппараты должны защищаться от перегрузки и токов КЗ соответствующими аппаратами защиты, например, реле перегрузки и автоматическими выключателями SIRIUS!
Основные преимущества полупроводниковых коммутационных аппаратов SIRIUS:

- Компактный корпус, возможность плотного монтажа, частые коммутации, надёжная работа при температурах окружающей среды до $+60^{\circ} \mathrm{C}$

Типы подключений
Полупроводниковые коммутационные аппараты поставляются с винтовыми леммами (рамочные зажимы), пружинными клеммами или клеммами для кольцевых кабельных наконечников.
(3) Винтовые клеммы

00
 Пружинные клеммы

Клеммы для подключения проводников с кольцевыми кабельными наконечниками

Присоединения обозначены в соответствующих таблицах символами на оранжевом фоне.

Общая информация
O630p

Тип	Полупроводниковые реле			Полупроводниковые контакторы		Функциональные модули					
	1-фазны 22,5 мм		3-фазные 45 мм	1-фазные	3-фазные	Преобразователи сигналов	Контроль Базовый	нагрузки Расширенный	Контроль тока обогрева	Задатчик мощности	Регулятор мощности
Применение											
Замена существующих полупроводниковых реле	\square	\checkmark	\square]	\square	--	--	--	--	--	--
Комплектные устройства "готовы к использованию"	\square	\square	\square	\checkmark	\checkmark	--	--	--	--	--	--
Малогабаритные	\checkmark	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--	--	--	--
Модульная конструкция, расширение функциональными модулями	\checkmark	--	1)	\checkmark	1)	--	--	--	--	--	--
Высокая частота коммутаций и контроль нагрузок и полупроводниковых реле/ полупроводниковых контакторов	--	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Контроль до 6 отдельных нагрузок	--	--	--	--	--	--	\checkmark	--	\checkmark	\checkmark	--
Контроль более 6 отдельных нагрузок	--	--	--	--	--	--	--	\checkmark	--	--	--
Управление мощностью нагрева через аналоговый вход	--	--	--	--	--	\checkmark	--	--	--	\checkmark	\checkmark
Регулирование мощности	--	--	--	--	--	--	--	--	--	--	\checkmark
Ввод в эксплуатацию											
Простая настройка заданных значений с помощью кнопки "Teach" ("Обучение")	--	--	--	--	--	--	\checkmark	\checkmark	--	\checkmark	\checkmark
Вход "Дистанционное обучение" для настройки заданных значений	--	--	--	--	--	--	--	--	\checkmark	--	--
Монтаж											
Монтаж монтажных рейках или монтажных платах	--	--	--	\checkmark	\checkmark	--	--	--	--	--	--
Монтаж непосредственно на полупроводниковое реле или контактор	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Монтаже на радиаторе "Coolplate"	\checkmark	\checkmark	\checkmark	--	--	--	--	--	--	--	--

радиаторе "Coolplate

Прокладка
 кабелей

Подключение
нагрузки как на
коммутационных аппаратах
Подключение нагрузки сверху
\checkmark Функция доступна

- Функция возмлжна
-- Функцияне недоступна

1) Применение конвертера возможно и в 3-фазных устройствах.

Схема заказного номера

Позиция заказного номера	$\begin{aligned} & \text { 1. - } 3 . \\ & \text { ㅁa口 } \end{aligned}$	4. \square	$5 .$	$6 .$	$7 .$	-	8.	9.	$10 .$	11.	$12 .$
Полупроводниковые коммутационные аппараты	3 RF										
Полупроводниковые коммутационные аппараты SIRIUS, поколение		\square									
Конструктивное исполнение			\square								
Типовой ток				\square	\square						
Вид присоединения							\square				
Функция переключения								\square			
Однофазный или количество управляемых фаз									\square		
Номинальное питающее напряжение управления										\square	
Номинальное рабочее напряжение											\square
Пример	3 RF	2	1	2	0	-	1	A	A	0	4

Примечание
Схема заказного номера служит только для лучшего понимания логики заказных номеров.

Характеристики

Преимущества

- Экономия места Благодаря габаритной ширине всего 22,5 мм
- Многообразная система подключений: винтовые клеммы, пружинные клеммы или клеммы для подключения кабелей с кольцевыми кабельными наконечниками
- Расширение функционала дополнительными модулями
- Возможна устойчивая к коротким замыканиям схема без использования предохранителей
- Экономия времени и расходов Благодаря быстрому монтажу и вводу в эксплуатацию, малому времени подготовки, простоте разводки
- Чрезвычайная долговечность, надежность, необслуживаемое исполнение
- Компактность и надежность даже при плотном монтаже
- Эксплуатация при температурах окружающей среды до $+60^{\circ} \mathrm{C}$
- Модульная конструкция: стандартизованные функциональные модули и радиаторы обеспечивают гибкость решений с применением полупроводниковых реле
- Износостойкие аппараты,
- Вибро- и ударостойкоая система пружинных клемм

Для того, чтобы оформить заказ, выберите в "параметрах выбора" и "данных заказа" необходимый вам номер.

Область применения

Применения

Пример. переработка пластмасс
Благодаря своей высокой коммутационной способности, полупроводниковые коммутационные аппараты SIRIUS оптимально подходят для управления работой электротермических устройств. Точное регулирование электротермических устройств используется, во многих процессах, например, производства полимеров.

- Ленточные нагреватели подогревают экструдат в полимерных экструдерах до нужной температуры
- Нагреватели подогревают синтетическое сырье до нужной температуры
- Нагревательные барабаны высушивают гранулированный пластик
- Нагревательные каналы поддерживают нужную температуру форм для точного формования различных пластмассовых деталей.
Мощные полупроводниковые реле и контакторы SIRIUS могут управлять несколькими нагревателями. Применение модуля контроля нагрузки обеспечивает удобный контроль отдельных нагрузок и генерацию сообщения в систему управления при отказе.
Применение в фидерах без предохранителей
Защита полупроводниковых реле/ контакторов SIRIUS и защита линий от токов короткого замыкания может обеспечиваться использованием комбинаций предохранителей и автоматических отключателей. Специальная версия полупроводниковых контакторов может защищаться от токов короткого замыкания модульным автоматическим выключателем с характеристикой срабатывания В. Тем самым возможно построение недорогих и простых фидеров.

Данные для выбора и заказа
Таблички для маркировки устройств типа 3RF2

	Обозначение	Площадь маркировки (Ш \times B)	Цвет	Кл. пост.	Заказной номер	Цена € за ЕП	ЕП (шт., Кмпл., м)	Кол-во уп.*	Уп.
		мм X мм							
Маркировочные таблички без надписей									
	Таблички для маркировки устройств SIRIUS ${ }^{1)}$	10×7	Пастельнобирюзовый	C	3RT19 00-1SB10	9,60	100	816 шт.	101
		20×7	Пастельнобирюзовый	D	3RT19 00-1SB20	21,20	100	340 шт.	101
	Таблички для приклеивания (этикетки) для устройств SIRIUS	19×6	Пастельнобирюзовый	C	3RT19 00-1SB60	2,20	100	3060 шт.	101
-10-1詈		19×6	Цинковожелтый	C	3RT19 00-1SD60	2,20	100	3060 шт.	101
Таблички для маркировки устройств (1 рамка = 20 шт.)									

1) Компьютерную систему создания индивидуальных надписей на табличках для маркировки устройств можно приобрести:
Murrplastik Systemtechnik GmbH
(см. главу 13, "Приложение" --> "Внешние партнеры").

Дополнительная информация

Указания по интеграции в фидеры нагрузки

Благодаря промышленной системе подключений и конструкции полупроводниковые коммутационные аппараты SIRIUS легко интегрируются в фидеры нагрузки.
Особое внимание, следует уделять конструктивным особенностям и условиям окружающей среды, так как работоспособность полупроводниковых коммутационных аппаратов существенно зависит от них. В зависимости от исполнения, следует учитывать определенные ограничения. Подробная техническая информация по полупроводниковым контакторам, например по соблюдению минимальных расстояний при монтаже, и по выбору радиаторов для полупроводниковых реле приведена в технических данных (см. Руководство) и в листах технических данных на аппараты.
Для применений с очень большой потребляемой мощностью могут использоваться преобразователи-регуляторы переменного напряжения SIVOLT. Подробную информацию о спектре продукции см. в каталоге DA 68 или в Industry Mall.

http://support.automation.siemens.com/WW/view/de/10862346

См. ID: 10752358
Защита от перегрузки и токов коротких замыканий
Несмотря на применение надежной полупроводниковой силовой электроники, полупроводниковые коммутационные аппараты чувствительны к коротким замыканиям в фидерах, поэтому необходимы особые меры для их защиты.
Компания Siemens рекомендует применение предохранителей для защиты полупроводниковых элементов типа SITOR . Эти предохранители обеспечивают защиту полупроводниковых аппаратов от разрушения при коротком замыкании даже при полной нагрузке.
Альтернативно, при меньшей нагрузке, также возможна защита стандартными предохранителями или линейными защитными автоматами. Такая защита обеспечивается выбором полупроводниковых коммутационных аппаратов с запасом параметров. В руководствах и технических данных изделий приведена информация, как о защите с помощью только полупроводниковых аппаратов, так и о применении устройств с традиционными аппаратами защиты.

Электромагнитная совместимость (ЭМС) (ЭМС)

Полупроводниковые коммутационные аппараты разработаны для эксплуатации в промышленных сетях без принятия дополнительных мер. При применении на инфраструктурных объектах, возможно, потребуется применение фильтров.
За исключением полупроводниковых контакторов для активных нагрузок специального исполнения типа 3RF23 ..-.CA. "Low Noise". Они выдерживают граничные значения по классу "В" до номинальной силы тока 16 А. При применении других исполнений и токе выше 16 А для соблюдения граничных значений могут применяться стандартные фильтры.
Определяющими для выбора фильтров в основном являются токовая нагрузка и другие параметры (номинальное рабочее напряжение, конструкция и т. д.).
Соответствующие фильтры производятся фирмой EPCOS AG. Дополнительную информацию см. в сети Интернет по адресу:
www.epcos.com

Полупроводниковые коммутационные аппараты для активных нагрузок

O6зор

Полупроводниковые реле

Полупроводниковые реле SIRIUS предназначены для установки на подготовленные заказчиком поверхности охлаждения. Монтаж выполняется двумя винтами. Специальная технология силовой электроники обеспечивает очень хороший контакт задней панели реле с поверхностью охлаждения. В зависимости от свойств радиатора, мощность рабочий ток реле может достигать 88 А (активная нагрузка).
Полупроводниковые реле предлагаются в трех различных исполнениях:

- 1-фазные полупроводниковые реле 3RF21 с габаритной шириной 22,5 мм
- 1-фазные полупроводниковые реле 3RF20 с габаритной шириной 45 мм
- 3-фазные полупроводниковые реле 3RF22 с габаритной шириной 45 мм
Для индивидуального согласования с применением полупроводниковые реле 3RF21 и 3RF22 могут расширяться различными функциональными модулями.

Исполнение для активных нагрузок ("коммутация в нулевой точке")
Это стандартное исполнение широко применяется для включения/ отключения нагревательных приборов.
Исполнение для индуктивных нагрузок ("Мгновенная коммутация")
В этом исполнении полупроводниковое реле предназначено для коммутации индуктивной нагрузки. Частые коммутации клапанов в разливочной установке, а также пуск/останов небольших приводов выполняются надежно и бесшумно.

Реле специального исполнения с пониженным уровнем

 помех ("Low Noise")Благодаря особой схеме управления, это специсполнение без дополнительных мероприятий, таких, как фильтр подавления помех, может применяться в общегражданских сетях до 16 А. При этом излучение помех не выходит за рамки кривой граничных значений класса "B" по EN 60947-4-3.

Однофазные полупроводниковые реле с габаритной шириной 22,5 мм
Полупроводниковые реле 3RF21 в компактном корпусе с габаритной шириной 22,5 мм рассчитаны на токи до 88 A. Логичная система подключений, с подводом питающих проводников сверху и подключением нагрузок снизу, обеспечивает наглядность проводки в электрошкафу.
Однофазные полупроводниковые реле с габаритной шириной 45 мм
Полупроводниковое реле с габаритной шириной 45 мм обеспечивает подключение питающих кабелей и кабелей нагрузок сверху. Подключение проводников управления выполняется аналогично реле с типоразмером 22,5 мм и занимает мало места.

3-фазные полупроводниковые реле с габаритной шириной 45 мм
3-фазные полупроводниковое реле 3RF22 в корпусе шириной 45 мм рассчитаны на токи до 55 А. Система подключений аналогична подключению 1-фазных реле: подвод питающих кабелей сверху и подключение кабелей нагрузок снизу.
3-фазные полупроводниковые реле предлагаются в следующих вариантах:

- 2-фазная система управления (особенно пригодна для схем без соединения с нейтралью) и
- 3-фазная система управления (пригодна для схем соединения "звездой" и с соединением с нейтралью или для применений, в которых должны коммутировать все фазы)
Примечания к выбору реле
Для выбора полупроводниковых реле, наряду с данными о сети, нагрузке, условиях окружающей среды, также необходимы сведения о требуемом конструктивном решении.
Полупроводниковые реле обеспечивают свои заявленные параметры только при надёжном монтаже на соответствующем радиаторе достаточных размеров.
Рекомендуется следующий порядок действий:
- Определение номинального тока нагрузки и номинального рабочего напряжения сети
- Выбор соответствующего исполнения реле
- Полупроводниковое реле выбирается с номинальной силой тока, превышающей ток нагрузки
- Определение термического сопротивления предусмотренного радиатора
- Проверка требуемого размера реле с помощью диаграммы Дополнительную информацию см. в Интернете:
www.siemens.de/halbleiterschaltgeraete

Полупроводниковые коммутационные аппараты для активных нагрузок

Полупроводниковые реле
Полупроводниковые реле SIRIUS 3RF21,
1-фазные, 22,5 мм

Oбзор

1-фазные Полупроводниковые реле 3RF21 в корпусе шириной 22,5 мм рассчитаны на токи до 88 A .
Стандартная система подключений: подвод питающих проводников сверху, проводников нагрузок снизу.

Технические данные

Тип		3RF21 ..-1....	3RF21 ..-2....	3RF21 ..-3....
Габариты (Шх $\mathrm{B} \times$ Г)		$22,5 \times 85 \times 48$	$22,5 \times 85 \times 48$	$22,5 \times 85 \times 48$

Общая информация

Температура окружающей среды

- При работе (требуется снижение номинальных ${ }^{\circ} \mathrm{C}$-25 ... + 60 значений параметров (дерейтинг) с $40^{\circ} \mathrm{C}$)
- При хранении
${ }^{\circ} \mathrm{C} \quad-55 \ldots+80$
Высота установки м $0 \ldots 1000$; требуется снижение номинальных значений параметров (дерейтинг) с 1000
Ударопрочность по IEC 60068-2-27 г/мс $15 / 11$
Вибростойкость по IEC 60068-2-6 \quad г
Степень защиты IP IP20
Электромагнитная совместимость (ЭМС)
- Излучение помех
- напряжение помех, обусловленное параметрами линий по IEC 60947-4-3
- излучаемое, высокочастотное напряжение помех по IEC 60947-4-3
- Помехоустойчивость
- электростатический разряд

по IEC 61000-4-2 (соответствует степени 3)

- Наведенные ВЧ-поля

по IEC 61000-4-6

- Всплески по IEC 61000-4-4 Импульс по IEC 61000-4-5

Класс А для промышленности
Класс В для жилых, офисных помещений

кВ Разряд контактов 4; разряд по воздуху 8; критерий поведения 2
МГц 0,15 ... 80; 140 дБмкВ; критерий поведения 1
кB 2/5,0 кГц; критерий поведения 2
кВ Проводник - земля 2; проводник - проводник 1; критерий поведения 2

1) При подключении двух проводников разного сечения к одной клемме оба сечения должны находиться в указанном диапазоне. При
применении одинаковых сечений это ограничение снимается.

Заказной номер	$\begin{aligned} & I_{\text {max }}{ }^{1)} \\ & \operatorname{mpn}_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C} \end{aligned}$		$I_{\text {e }}$ по IEC 60947-4-3 при $R_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C}$		I_{e} по UL/CSA при $R_{\text {thna }} / T_{u}=50^{\circ} \mathrm{C}$		Потери мощности при $I_{\text {max }}$	Минимальный ток нагрузки	Ток утечки
	A	K/BT	A	K/BT	A	K/BT	Вт	A	MA
Силовая цепь									
3RF21 20-.....	20	2,0	20	1,7	20	1,3	28,6	0,1	10
3RF21 30-1....	30	1,1	30	0,79	30	0,56	44,2	0,5	10
3RF21 50-1....	50	0,68	50	0,48	50	0,33	66	0,5	10
3RF21 50-2....	50	0,68	20	2,6	20	2,9	66	0,5	10
3RF21 50-3....	50	0,68	50	0,48	50	0,33	66	0,5	10
3RF21 70-1....	70	0,40	50	0,77	50	0,6	94	0,5	10
3RF21 90-1...	88	0,33	50	0,94	50	0,85	118	0,5	10
3RF21 90-2....	88	0,33	20	2,8	20	3,5	118	0,5	10
3RF21 90-3....	88	0,33	88	0,22	83	0,19	118	0,5	10

1) $I_{\text {max }}$ отображает мощность полупроводникового реле. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения.

Примечание
Требуемые радиаторы для соответствующих токов определяются по характеристикам (см. ссылку на техническую информацию, стр. 4/1).
При этом необходимо соблюдать требования к минимальной толщине монтажной поверхности.

Заказной номер	Расчетная импульсная прочность $I_{\text {tsm }}$	$I^{2} t$-значение
	A	$\mathrm{A}^{2} \mathrm{C}$
Силовая цепь		
3RF21 20-.....	200	200
3RF21 30-..A. 2	300	450
3RF21 30-..A. 4	300	450
3RF21 30-..A. 5	300	450
3RF21 30-..A. 6	400	800
3RF21 50-.....	600	1800
3RF21 70-..A. 2	1200	7200
3RF21 70-..A. 4	1200	7200
3RF21 70-..A. 5	1200	7200
3RF21 70-..A. 6	1150	6600
3RF21 90-.....	1150	6600

Тип		3RF21 ..-.... 2	3RF21 ..-.... 4	3RF21 ..-... 5	3RF21 ..-.... 6
Силовая цепь					
Номинальное рабочее напряжение U_{e} - Рабочий диапазон - Номинальная частота	$\begin{aligned} & A C B \\ & A C B \\ & \Gamma \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & 20 \ldots 253 \\ & 50 / 60 \pm 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 48 . . .460 \\ & 40 \ldots 506 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 60 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$
Номинальное напряжение изоляции U_{i}	B	600			
блокирующее напряжение	B	800	1200		1600
Крутизна подъема напряжения	$\begin{aligned} & \mathrm{B} / \mathrm{mk} \\ & \mathrm{c} \end{aligned}$	1000			

Тип		3RF21 ..-... 0.	3RF21 ..-...1.		3RF21 ..-... 2.	3RF21 ..-...4.
Цепь управления						
Вид напряжения управления		Управление DC	Управление AC/DC		Управление АС	Управление DC
Номинальное питающее напряжение управления U_{s}	B	24 по EN 61131-2	AC 24	DC 24	110 ... 230	4 ... 30
Номинальная частота питающего напряжения управления	Гц	--	$\begin{aligned} & 50 / 60 \\ & \pm 10 \% \end{aligned}$	--	50/60 ± 10 \%	--
Питающее напряжение управления, макс.	B	30	AC 26,5	DC 30	253	30
Типовые токи	MA	20 Low Power: 6,5 ${ }^{1)}$	20	20	15	20
Напряжение срабатывания	B	15	AC 14	DC 15	90	4
Напряжение отпускания	B	5	AC 5	DC 5	40	1
Время коммутации						
- Задержка включения	мс	1 + макс. одна полуволна ${ }^{2)}$	10 + мак полувол		$\begin{aligned} & 40 \text { + макс. одна } \\ & \text { полуволна²) } \end{aligned}$	1 + макс. одна полуволна ${ }^{2}$)
- Задержка отключения	мс	1 + макс. одна полуволна	15 + мак полувол		40 + макс. одна полуволна	1 + макс. одна полуволна

[^0]
Полупроводниковые реле

Полупроводниковые реле SIRIUS 3RF21,
1-фазные, 22,5 мм
Принципиальные электрические схемы

Питающее напряжение управления DC

Питающее напряжение управления AC

Данные для выбора и заказа

	Типовой ток ${ }^{1}$)	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Винтовые клеммы ${ }^{\text {2 }}$	(1)	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол-во уп.*	Уп.
	A	B		Заказной номер	Цена € за ЕП			
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 24 ... 230 B								
	$\begin{aligned} & 20 \\ & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	DC 24 по EN 61131-2	A A A A A	3RF21 20-1AA02 3RF21 30-1AA02 3RF21 50-1AA02 3RF21 70-1AA02 3RF21 90-1AA02	$\begin{aligned} & 31,50 \\ & 31,90 \\ & 34,30 \\ & 43,70 \\ & 52,50 \end{aligned}$	1 1 1 1 1	1 шт. 1 шт. 1 шт. 1 шт. 1 шт.	$\begin{aligned} & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \end{aligned}$
	20	AC 110 ... 230	A	3RF21 20-1AA22	35,10	1	1 шт.	101
	30		A	3RF21 30-1AA22	35,50	1	1 шт.	101
	50		A	3RF21 50-1AA22	38,20	1	1 шт.	101
θ	70		A	3RF21 70-1AA22	47,40	1	1 шт.	101
	90		B	3RF21 90-1AA22	56,30	1	1 шт.	101
	20	DC $4 \ldots 30$	B	3RF21 20-1AA42	31,50	1	1 шт.	101
3RF21 20-1AA02	30		B	3RF21 30-1AA42	31,90	1	1 шт.	101
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 460 B								
	20	DC 24 по EN 61131-2	A	3RF21 20-1AA04	35,50	1	1 шт.	101
	30		A	3RF21 30-1AA04	36,40	1	1 шт.	101
	50		A	3RF21 50-1AA04	40,10	1	1 шт.	101
	70		A	3RF21 70-1AA04	47,30	1	1 шт.	101
	90		A	3RF21 90-1AA04	54,-	1	1 шт.	101
	20	24 AC/DC	A	3RF21 50-1AA14	40,10	1	1 шт.	101
	20	AC 110 ... 230	A	3RF21 20-1AA24	39,-	1	1 шт.	101
	30		A	3RF21 30-1AA24	40,10	1	1 шт.	101
	50		A	3RF21 50-1AA24	43,90	1	1 шт.	101
	70		A	3RF21 70-1AA24	51,-	1	1 шт.	101
	90		A	3RF21 90-1AA24	57,70	1	1 шт.	101
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC $48 \ldots 600$ B								
	70	DC 24 Low Power	B	3RF21 70-1AA05-0KNO	50,50	1	1 шт.	101
	20	DC 4 ... 30		3RF21 20-1AA45	37,-	1	1 шт.	101
	30		B	3RF21 30-1AA45	38,20	1	1 шт.	101
	50		B	3RF21 50-1AA45	41,80	1	1 шт.	101
	70		B	3RF21 70-1AA45	47,30	1	1 шт.	101
	90		B	3RF21 90-1AA45	56,60	1	1 шт.	101
Коммутация в нулевой точке, блокирующее напряжение 1600 в, номинальное рабочее напряжение U_{e} AC 48 ... 600 B								
	30	DC 24 по EN 61131-2	A	3RF21 30-1AA06	51,90	1	1 шт.	101
	50		A	3RF21 50-1AA06	53,80	1	1 шт.	101
	70		B	3RF21 70-1AA06	58,10	1	1 шт.	101
	90		B	3RF21 90-1AA06	62,40	1	1 шт.	101
	30	AC 110 ... 230	B	3RF21 30-1AA26	55,80	1	1 шт.	101
	50		B	3RF21 50-1AA26	57,70	1	1 шт.	101
	70		B	3RF21 70-1AA26	62,30	1	1 шт.	101
	90		B	3RF21 90-1AA26	66,40	1	1 шт.	101

Другие номинальные питающие напряжения управления -
по запросу.

1) Типовой ток отображает мощность полупроводникового реле.

Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения.
2) Учитывайте, что это исполнение может использоваться только при ном. токах до 50 А при сечении проводников 10 мм 2.

Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий охлаждения.

Другие номинальные питающие напряжения управления по запросу.

1) Типовой ток отображает мощность полупроводникового реле Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения.
2) Учитывайте, что это исполнение с пружинными клеммами может использоваться только при ном. токах до 20 А при сечении проводников 2,5 мм². При больших токах подключается по два проводника к каждой присоединительной клемме.

Полупроводниковые коммутационные аппараты для активных нагрузок
Полупроводниковые реле
Полупроводниковые реле SIRIUS 3RF21,
1-фазные, 22,5 мм

Другие номинальные питающие напряжения управления -
по запросу.

1) Типовой ток отображает мощность полупроводникового реле.

Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий охлаждения.

1-фазные Полупроводниковые реле в корпусе шириной 45 мм.
Подключение питающих кабелей и кабелей нагрузки сверху.
Подключение проводников управления аналогично реле в корпусе 22,5 мм.

Технические данные

| Тип |
| :--- | :--- | :--- | :--- |
| Габариты (Ш х В х Г) |

1) При подсоединении двух проводников разного сечения к одной клемме оба сечения должны находиться в указанном диапазоне. При применении одинаковых сечений это ограничение снимается.

Полупроводниковые коммутационные аппараты для активных нагрузок Полупроводниковые реле
Полупроводниковые реле SIRIUS 3RF20,
1-фазные, 45 мм

Заказной номер	$\begin{aligned} & I_{\text {max }}{ }^{1)} \\ & \text { mpn }_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} по IEC 60947-4-3 при $R_{\text {thna }} / T_{u}=40^{\circ} \mathrm{C}$		I_{e} по UL/CSA при $\mathrm{R}_{\text {thna }} / \mathrm{T}_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Потери мощности при $I_{\text {max }}$	Минимальный ток нагрузки	Ток утечки
	A	K/W	A	K/W	A	K/W	BT	A	MA
Силовая цепь									
3RF20 20-1.A..	20	2,0	20	1,7	20	1,3	28,6	0,1	10
3RF20 30-1.A..	30	1,1	30	0,79	30	0,56	44,2	0,5	10
3RF20 50-1.A..	50	0,68	50	0,48	50	0,33	66	0,5	10
3RF20 70-1.A..	70	0,40	50	0,77	50	0,6	94	0,5	10
3RF20 90-1.A..	88	0,33	50	0,94	50	0,85	118	0,5	10

1) $I_{\max }$ отображает мощность полупроводникового реле. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения.

Примечание
Требуемые радиаторы длясоответствующих токов определяются по характеристикам (см. ссылку на техническую информацию, стр. 4/1). При этом необходимо соблюдать требования к минимальной толщине монтажной поверхности.

Заказной номер	Расчетная импульсная прочность $\mathrm{I}_{\text {tsm }}$	$I^{2} \mathrm{t}$-значение
	A	$\mathrm{A}^{2} \mathrm{~s}$
Силовая цепь		
3RF20 20-1.A..	200	200
3RF20 30-1.A. 2	300	450
3RF20 30-1.A. 4	300	450
3RF20 30-1.A. 6	400	800
3RF20 50-1.A..	600	1800
3RF20 70-1.A. 2	1200	7200
3RF20 70-1.A. 4	1200	7200
3RF20 70-1.A. 5	1200	7200
3RF20 70-1.A.6	1150	6600
3RF20 90-1.A..	1150	6600

Тип		3RF20 .0-1.A. 2	3RF20 .0-1.A.4	3RF20 .0-1.A. 5	3RF20 .0-1.A. 6
Силовая цепь					
Номинальное рабочее напряжение U_{e} - Рабочий диапазон - Номинальная частота	AC B AC B Гц	$\begin{aligned} & 24 \ldots 230 \\ & 20 \ldots 253 \\ & 50 / 60 \pm 10 \% \end{aligned}$	$\begin{aligned} & 48 \ldots 460 \\ & 40 \ldots 506 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$
Номинальное напряжение изоляции U_{i}	B	600			
блокирующее напряжение	B	800	1200		1600
Крутизна подъема напряжения	B/ мкс	1000			

Тип		3RF20 0-1.A0.	3RF20 .0-1.A2.	3RF20 0-1.A4.
Цепь управления				
Род управляющего напряжения		Управление DC	Управление AC	Управление DC
Номинальное питающее напряжение управления U_{s}	B	24 по EN 61131-2	110 ... 230	4 ... 30
Номинальная частота питающего напряжения управления	Ги	--	$50 / 60 \pm 10 \%$	--
Питающее напряжение управления, макс.	B	30	253	30
Типовые токи	MA	20	15	20
Напряжение срабатывания	B	15	90	4
Напряжение отпускания	B	5	40	1
Время коммутации				
- Задержка включения	мс	1 + макс. одна полуволна ${ }^{1)}$	40 + макс. одна полуволна ${ }^{1)}$	1 + макс. одна полуволна ${ }^{1)}$
- Задержка отключения	мс	1 + макс. одна полуволна	40 + макс. одна полуволна	1 + макс. одна полуволна

1) Только для устройств с коммутацией в нулевой точке.

Принципиальные электрические схемы

Питающее напряжение управления DC

Питающее напряжение управления AC

Данные для выбора и заказа

1) Типовой ток отображает мощность полупроводникового реле. Фактически допустимый номинальный рабочий ток I_{e} Может быть меньше,
в зависимости от вида подключения и условий охлаждения.
2) Учитывайте, что это исполнение может использоваться только при ном. токах до 50 А при сечении проводников 10 мм 2

* Заказывается указанное или кратное данному количество. Листовые цены на 2010/2011 ф.г. Иллюстрации приблизительные

Полупроводниковые коммутационные аппараты для активных нагрузок

Полупроводниковые реле

Полупроводниковые реле SIRIUS 3RF22,

3-фазные, 45 мм

O6зор

3-фазные полупроводниковые реле 3RF22 на токи до 55 A.
Корпус шириной 45 мм.
Подвод питающих проводников сверху, подвод проводников нагрузки - снизу.

Основные признаки:

- светодиодный индикатор состояния
- втычные клеммы цепи управления
- степень защиты IP IP20
- коммутация в нулевой точке
- 2- или 3-фазное управление

Технические данные

Общая информация

Температура окружающей среды

- при эксплуатации (требуется снижение ${ }^{\circ} \mathrm{C}$-25 ... + 60 номинальных значений параметров (дерейтинг) с $40^{\circ} \mathrm{C}$)
- при хранении
${ }^{\circ} \mathrm{C} \quad-55 \ldots+80$

Высота установки	м	$0 \ldots$.. 1000; > 1000-по запросу
Ударопрочность по IEC 60068-2-27	г/мс	$15 / 11$
Вибростойкость по IEC 60068-2-6	Γ	2
Степень защиты IP		IP20
Прочность изоляции при 50/60 Гц	В скв	4000
(Основной контур/цепь управления на землю)		

Электромагнитная совместимость (ЭМС)
(ЭМС)

- Излучение
- напряжение помех, обусловленное параметрами линий по IEC 60947-4-3
- Помехоустойчивость
- электростатический разряд

кВ Разряд контактов 4; разряд по воздуху 8; критерий поведения 2 по IEC 61000-4-2
(соответствует степени резкости 3)

- Наведенные ВЧ-поля по IEC 61000-4-6

МГц 0,15 ... 80; 140 дБмкВ; критерий поведения 1

- Всплески по IEC 61000-4-4
- Импульс по IEC 61000-4-5

кB 2/5,0 кГц; критерий поведения 2

1) Эта продукция изготавливается как устройства класса A.

Применение этих устройств в жилых помещениях может приводить к радиопомехам
2) При подсоединении двух проводников разного сечения к одной

клемме оба сечения должны находиться в указанном диапазоне. При применении одинаковых сечений это ограничение снимается.

Заказной номер	$\begin{aligned} & I_{\text {max }}{ }^{1)} \\ & \operatorname{mpn} R_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} по IEC 60947-4-3 при $R_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C}$		I_{e} по UL/CSA при $R_{\text {thna }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Потери мощности при $I_{\text {max }}$	Минимальный ток нагрузки	Макс. ток утечки
	A	K/BT	A	K/BT	A	K/BT	Вт	A	MA
Силовая цепь									
3RF22 30-. AB..	30	0,57	30	0,57	30	0,44	81	0,5	10
3RF22 55-1AB. 3RF22 55-2AB. 3RF22 55-3AB.	55	0,18	$\begin{aligned} & 50 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 0,27 \\ & 1,83 \\ & 0,27 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 0,19 \\ & 1,58 \\ & 0,19 \end{aligned}$	151	0,5	10
3RF22 30-. AC..	30	0,33	30	0,33	30	0,25	122	0,5	10
3RF22 55-1AC. 3RF22 55-2AC.. 3RF22 55-3AC.	55	0,09	$\begin{aligned} & 50 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 0,15 \\ & 1,19 \\ & 0,15 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 0,1 \\ & 1,02 \\ & 0,1 \end{aligned}$	226	0,5	10

1) $I_{\text {max }}$ отображает мощность полупроводникового реле. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения

Примечание
Требуемые радиаторы для соответствующих токов определяются по характеристикам (см. ссылку на техническую информацию, стр. 4/1). При этом необходимо соблюдать требования к минимальной толщине монтажной поверхности.

Принципиальные электрические схемы

2-фазное управление
Питающее напряжение управления DC

3-фазное управление
Питающее напряжение управления DC

Полупроводниковые коммутационные аппараты для активных нагрузок
Полупроводниковые реле
Полупроводниковые реле SIRIUS 3RF22,
3-фазные, 45 мм
Данные для выбора и заказа

	Типовой ток ${ }^{1)}$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Винтовые клеммы ${ }^{2}$)	\cdots	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м } \end{gathered}$	Кол-во уп.*	Уп.
	A	B		Заказной номер	Цена € за ЕП			
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 600 B								
	2-фазное управление							
	30	AC 110	B	3RF22 30-1AB35	100,--	1	1 шт.	101
	55		B	3RF22 55-1AB35	117,--	1	1 шт.	101
	30	DC $4 \ldots 30$	B	3RF22 30-1AB45	96,10	1	1 шт.	101
	55		B	3RF22 55-1AB45	112,--	1	1 шт.	101
	3-фазное управление							
	30	AC 110	B	3RF22 30-1AC35	126,--	1	1 шт.	101
3RF22 30-1AB45	55		B	3RF22 55-1AC35	157,--	1	1 шт.	101
	30	DC $4 \ldots 30$	A	3RF22 30-1AC45	122,--	1	1 шт.	101
	55		B	3RF22 55-1AC45	153,--	1	1 шт.	101
	Типовой ток ${ }^{1)}$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Пружинные клеммы ${ }^{3}$	∞	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол-во уп.*	Уп.
	A	B		Заказной номер	Цена € за ЕП			
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 600 B								
	2-фазное управление							
	30	DC $4 \ldots 30$	B	3RF22 30-2AB45	99,90	1	1 шт.	101
	55		B	3RF22 55-2AB45	117,--	1	1 шт.	101
	3-фазное управление							
	30	DC $4 \ldots 30$	B	3RF22 30-2AC45	127,--	1	1 шт.	101
	55		B	3RF22 55-2AC45	159,--	1	1 шт.	101

1) Типовой ток отображает мощность полупроводникового реле. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий охлаждения.
2) Учитывайте, что это исполнение с винтовыми клеммами М4 может использоваться только при номинальной силе тока до прим. 50 А при сечении проводников 10 мм 2.
3) Учитывайте, что это исполнение с пружинными клеммами может использоваться только при ном. токах до 20 А при сечении проводников 2,5 мм 2. При больших токах подключается по два проводника к каждой присоединительной клемме.

Полупроводниковые коммутационные аппараты для активных нагрузок

 Полупроводниковые контакторыОбщая информация

O6зор

Полупроводниковые контакторы

Полупроводниковые контакторы представляют собой комплектные готовые кэксплуатации устройства, состоящие из силовых полупроводниковых элементов и смонтированного оптимизированного радиатора. В зависимости от исполнения, номинальный рабочий ток может достигать 88 А. Как и все полупроводниковые коммутационные аппараты SIRIUS, полупроводниковые контакторы выполнены в компактном корпусе.
Благодаря изолированному основанию корпуса, контакторы могут монтироваться на стандартной монтажной рейке или на монтажной плате крепёжными винтами. Эта изоляция обеспечивает возможность применение этих контакторов в схемах с безопасным пониженным напряжением (PELV) или в системах безопасности с пониженным напряжением (SELV). Для защиты персонала радиатор может быть заземлён.
Полупроводниковые контакторы предлагаются в двух различных исполнениях:

- 1-фазные полупроводниковые контакторы 3RF23,
- 3-фазные полупроводниковые контакторы 3RF24.

Однофазные исполнения
Полупроводниковые контакторы 3RF23 могут расширяться дополнительными функциональными модулями.
Исполнение контакторов для активных нагрузок "коммутация в нулевой точке"
Это стандартное исполнение широко применяется для включения/ отключения нагревательных аппаратов.

Исполнение контакторов для индуктивных нагрузок "мгновенная коммутация"
В этом исполнении полупроводниковые контакторы предназначены для коммутации индуктивной нагрузки. Частое включение клапанов в разливочной установке, а также пуск/останов небольших приводов выполняются надежно и бесшумно.
Специсполнение с пониженным уровнем помех "Low Noise"
Благодаря особой схеме управления это специсполнение без принятия дополнительных мер, таких, как установка фильтров подавления помех, может применяться в инфраструктурных сетях с токами до 16 А. При этом излучение помех не выходит за рамки кривой граничных значений класса В по EN 60947-4-3.
Специсполнение "Устойчивые к коротким замыканиям"
Понятие "Устойчивые к коротким замыканиям" значит то, что силовые полупроводники в таких контакторах подобраны таким образом, что их защита от токов КЗ может быть обеспечена стандартными модульными автоматическими выключателями с характеристикой "В"
В любом случае защита фидера от токов КЗ должна быть обеспечена автоматическим выключателем или соответствующими предохранителями.
Однако для беспроблемной защиты от короткого замыкания с помощью линейного защитного автомата необходимо обеспечить соблюдение некоторых граничных условий Поскольку на величину и длительность тока короткого замыкания влияет не только характеристика отключения токов KЗ линейного защитного автомата, но и такие свойства цепи, как внутреннее сопротивление сети электропитания, демпфирование коммутационными аппаратами и проводниками, то необходимо уделить особое внимание и этим параметрам. Поэтому в следующей таблице для главного фактора - сопротивления линии - указана требуемая длина кабелей.

Следующие модульные автоматы с характеристикой "В" и с коммутационной стойкостью 10 кА или 6 кА защищают полупроводниковые контакторы 3RF23 ..-.DA.. в случае коротких замыканий в цепи нагрузки в соответствии с указанными сечениями и длинами проводников:

Номинальный ток модульного автоматического выключателя	Пример Тип ${ }^{1)}$	Максимальное сечение проводника	Минимальная длина кабеля от контактора до нагрузки
6 A	$\begin{aligned} & \text { 5SY4 106-6, } \\ & \text { 5SX2 106-6 } \end{aligned}$	$1 \mathrm{~mm}^{2}$	5 m
10 A	5SY4 110-6, 5SX2 110-6	$1,5 \mathrm{~mm}^{2}$	8 м
16 A	5SY4 116-6, 5SX2 116-6	$1,5 \mathrm{~mm}^{2}$	12 m
16 A	$\begin{aligned} & \text { 5SY4 116-6, } \\ & \text { 5SX2 116-6 } \end{aligned}$	$2,5 \mathrm{~mm}^{2}$	20 m
20 A	$\begin{aligned} & \text { 5SY4 120-6, } \\ & \text { 5SX2 120-6 } \end{aligned}$	$2,5 \mathrm{~mm}^{2}$	20 m
25 A	$\begin{aligned} & \text { 5SY4 125-6, } \\ & \text { 5SX2 125-6 } \end{aligned}$	$2,5 \mathrm{~mm}^{2}$	26 м

1) Модульные автоматы могут применяться вплоть до максимального номинального напряжения контакторов 480 B!

Вышеприведенная схема также может применяться для полупроводниковых реле с $I^{2} t$-значением не менее $6600 A^{2} c$.

3-фазные исполнения

3-фазные полупроводниковые контакторы для коммутации активных нагрузок до 50 А имеются в следующих вариантах:

- 2-фазная система управления (пригодна для схем без соединения с нейтралью) и
- 3-фазная система управления (пригодна для схемы соединения "звездой" и с соединением с нейтралью или для применений, в которых должны коммутировать все фазы)
Для управления работой трехфазных потребителей с помощью аналоговых сигналов к обоим исполнениям может быть подключён опциональный функциональный модуль
"Преобразователь сигналов".
- Проверяйте размер контактора с помощью диаграммы номинального тока с учетом условий монтажа

Полупроводниковые коммутационные аппараты для активных нагрузок Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные

Технические данные

Заказной номер		3RF23 ..-.A... 3RF23 ..-.В...	3RF23 ..-.C...	3RF23 ..-.D...
Габариты ($\mathrm{W} \times \mathrm{B} \times \Gamma$)		См. следующую страницу		
Общая информация				
Температура окружающей среды				
- при эксплуатации (требуется снижение номинальных значений параметров (дерейтинг) с $40^{\circ} \mathrm{C}$)		$-25 \ldots+60$		
- при хранении	${ }^{\circ} \mathrm{C}$	-55 ... +80		
Высота установки	м	0 ... 1000; требуется снижение номинальн	параметров (дерейтинг)	000
Ударопрочность по IEC 60068-2-27	Γ / Mc	15/11		
Вибростойкость по IEC 60068-2-6	r	2		
Степень защиты IP		IP20		
Электромагнитная совместимость (ЭМС)				
- Излучение по IEC 60947-4-3 - напряжение помех, обусловленное параметрами линий		Класс А для промышленности	Класс А для промышленности; Класс В для жилых и офисных помещений, до 16 A, AC-51 Low Noise	Класс А для промышленности
- излучаемое, высокочастотное напряжение помех		Класс В для жилых, офисных помещений		
- Помехоустойчивость - электростатический разряд по IEC 61000-4-2 (соответствует степени резкости 3)	кB	разряд контактов 4; разряд по воздуху 8;	ведения 2	
- Наведенные ВЧ-поля по IEC 61000-4-6	МГц	0,15 ... 80; 140 дБмкВ; критерий поведени		
- Всплески по IEC 61000-4-4	kB	$2 / 5,0$ кГц; критерий поведения 2		

Заказной номер		3RF23 ..-1....	3RF23 ..-2....	3RF23 ..-3....
Общан информация				
Вид присоединения		(1) Винтовые клеммы	OO Пружинные клеммы	Клеммы для подключения проводников с кольцевыми кабельными наконечниками
Подключение, силовая цепь				
- Сечение проводников - одножильные - многожильные с каб. наконечником	$\begin{aligned} & \text { мм }^{2} \\ & \text { м }^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1,5 \ldots 2,5)^{1)}, 2 \times(2,5 \ldots 6)^{1)} \\ & 2 \times(1 \ldots 2, \ldots)^{1)}, 2 \times(2,5 \ldots 6)^{1}, \\ & 1 \times 10 \end{aligned}$	$\begin{aligned} & 2 x(0,5 \ldots 2,5) \\ & 2 x(0,5 \ldots \\ & \hline 1,5) \end{aligned}$	--
- многожильные без каб. наконечника - одно- или многожильные, провода AWG	м ${ }^{2}$	$2 \times(\text { AWG } 14 \ldots 10)$	$\begin{aligned} & \text { 2x (0,5 ... } 2,5 \text {) } \\ & 2 \times(\text { AWG } 18 \ldots 14) \end{aligned}$	
- Винты клемм		M4	--	M5
- Момент затяжки	Hм	$2 . . .2,5$	--	$2 . . .2,5$
- Каб. наконечники - DIN - JIS		--	--	DIN 46234 $-5-2,5,-5-6,-5-10,-5-16,-5-25$ JIS C 2805 R 2-5, 5,5-5, 8-5, 14-5
Подключение, вспомогательные/ управляющие контакты				
- Сечение проводников	MM AWG	$\begin{aligned} & \left.1 \times(0,5 \ldots 2,5)^{1}\right), 2 \times(0,5 \ldots 1,0) \\ & \text { AWG } 20 \ldots .12 \end{aligned}$	$\begin{aligned} & 0,5 \ldots 2,5 \\ & \text { AWG } 20 \ldots 12 \end{aligned}$	$\begin{aligned} & 1 \times(0,5 \ldots 2,5), 2 \times(0,5 \ldots 1,0) \\ & \text { AWG } 20 \ldots 12 \end{aligned}$
- Длина снимаемой изоляции	Mм	7	10	7
- Винты клемм		M3	--	M3
- Момент затяжки	Hм	0,5 ... 0,6	--	0,5 ... 0,6
Винт заземления ${ }^{2}$				
- Размер (стандартный винт)		M4	M4	M4
Допустимое монтажное положение				

1) При подсоединении двух проводников разного сечения к одной клемме оба сечения должны находиться в указанном диапазоне. При применении одинаковых сечений это ограничение снимается.
2) Винты не входят в комплект поставки.

3) Действительно для исполнения"Low Power" 3RF23 ..-.AA..-OKNO
4) Только для устройств с коммутацией в нулевой точке.

Заказной номер	Типовой ток АС-51)	Габариты (Ш х В х Г) (вкл. радиатор)
	A	

1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий монтажа.

Заказной номер

Типовой ток $\mathrm{AC}-51^{1)}$ Габариты (Ш \times В \times Г)

 (вкл. радиатор)M

Силовая цель		
3RF23 40-.AA..	40	$67 \times 100 \times 151$
3RF23 50-.AA..	50	$67 \times 100 \times 151$
3RF23 70-.AA..	70	$135 \times 100 \times 157,5$
3RF23 90-.AA..	88	$180 \times 200 \times 157,5$

Полупроводниковые коммутационные аппараты для активных нагрузок
Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные

Заказной номер	Типовой ток AC-51)			Потери мощности при $I_{\text {max }}$	Минимальный ток нагрузки	Ток утечки	Расчетная импульсная прочность $I_{\text {tsm }}$	$I^{\mathbf{2}} \boldsymbol{t}$-значение
	$\begin{aligned} & \text { при } I_{\max } \\ & \text { при } 40^{\circ} \mathrm{C} \end{aligned}$	по IEC 60947-4-3 при $40{ }^{\circ} \mathrm{C}$	по UL/CSA при $50^{\circ} \mathrm{C}$					
	A	A	A	BT	A	mA	A	$\mathrm{A}^{2} \mathrm{~S}$
СИловая цепь								
$\begin{aligned} & \text { 3RF23 10-.AA. } 2 \\ & \text { 3RF23 10-.AA. } 4 \\ & \text { 3RF23 10-.AA. } 5 \\ & \text { 3RF23 10-.AA. } 6 \end{aligned}$	10,5	7,5	9,6	11	0,1	10	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 800 \end{aligned}$
3RF23 20-.AA. 2 3RF23 20-.AA. 4 3RF23 20-.AA. 5 3RF23 20-.AA. 6 3RF23 20-.CA. 2 3RF23 20-.CA. 4 3RF23 20-.DA. 2 3RF23 20-DA. 4	20	13,2	17,6	20	0,5	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 25 \\ & 25 \\ & 10 \\ & 10 \end{aligned}$	600 600 600 600 600 600 1150 1150	$\begin{aligned} & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \\ & 6600 \\ & 6600 \end{aligned}$
$\begin{aligned} & \text { 3RF23 30-.AA.2 } \\ & \text { 3RF23 30-.AA.4 } \\ & \text { 3RF23 30-.AA.5 } \\ & \text { 3RF23 30-.AA. } 6 \\ & \text { 3RF23 30-.CA.2 } \\ & \text { 3RF23 30-.DA.4 } \end{aligned}$	30	22	27	33	0,5	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 25 \\ & 10 \\ & \hline \end{aligned}$	600 600 600 600 600 1150	$\begin{aligned} & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \\ & 6600 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 40-.AA. } 2 \\ & \text { 3RF23 40-.AA. } 4 \\ & \text { 3RF23 40-.AA. } 5 \\ & \text { 3RF23 40-.AA. } 6 \end{aligned}$	40	33	36	44	0,5	10	$\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 1150 \end{aligned}$	$\begin{aligned} & 7200 \\ & 7200 \\ & 7200 \\ & 6600 \end{aligned}$
$\begin{aligned} & \text { 3RF23 50-.AA. } 2 \\ & \text { 3RF23 50-.AA. } 4 \\ & \text { 3RF23 50-.AA. } 5 \\ & \text { 3RF23 50-.AA. } 6 \end{aligned}$	50	36	45	54	0,5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF23 70-.AA. } 2 \\ & \text { 3RF23 70-.AA. } 4 \\ & \text { 3RF23 70-.AA. } 5 \\ & \text { 3RF23 70-.AA. } 6 \end{aligned}$	70	70	62	83	0,5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF23 90-.AA. } 2 \\ & \text { 3RF23 90-.AA. } 4 \\ & \text { 3RF23 90-.AA. } 5 \\ & \text { 3RF23 90-.AA. } 6 \end{aligned}$	88	88	80	117	0,5	10	1150	6600

1) Типовой ток отображает мощность полупроводникового контактора.

Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа.

Заказной номер	Типовой ток AC-51)			Типовой ток AC-15		Потери мощности при $I_{\max }$	Минимальн ый ток нагрузки	Ток утечки	Расчетная импульсная прочность I tsm	$I^{2} \boldsymbol{t}$-значение
	при $I_{\text {max }}$. при $40^{\circ} \mathrm{C}$	по IEC 60947-4-3 при $40^{\circ} \mathrm{C}$	по UL/CSA при $50^{\circ} \mathrm{C}$	$\begin{aligned} & 10 \times I_{\mathrm{e}} \\ & \text { для60 мс } \end{aligned}$	Параметр					
	A	A	A	A		Bт	A	mA	A	$A^{2} s$
Силовая цепь										
$\begin{aligned} & \text { 3RF23 10-.BA. } 2 \\ & \text { 3RF23 10-.BA. } 4 \\ & \text { 3RF23 10-.BA. } 6 \end{aligned}$	10,5	7,5	9,6	6	$\begin{aligned} & 1200 \text { 1/4 } \\ & 50 \% \text { ED } \end{aligned}$	11	0,1	10	$\begin{aligned} & 200 \\ & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 800 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 20-.BA. } 2 \\ & \text { 3RF23 20-.BA. } 4 \\ & \text { 3RF23 20-.BA. } 6 \end{aligned}$	20	13,2	17,6	12	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	20	0,5	10	600	1800
$\begin{aligned} & \text { 3RF23 30-.BA. } 2 \\ & \text { 3RF23 30-.BA. } 4 \\ & \text { 3RF23 30-.BA. } 6 \end{aligned}$	30	22	27	15	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	33	0,5	10	600	1800
$\begin{aligned} & \text { 3RF23 40-.BA. } 2 \\ & \text { 3RF23 40-.BA. } 4 \\ & \text { 3RF23 40-.BA. } 6 \end{aligned}$	40	33	36	20	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	44	0,5	10	$\begin{aligned} & 1200 \\ & 1200 \\ & 1150 \end{aligned}$	$\begin{aligned} & 7200 \\ & 7200 \\ & 6600 \end{aligned}$
3RF23 50-.BA. 2 3RF23 50-BA. 4 3RF23 50-BA. 6	50	36	45	25	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	54	0,5	10	1150	6600
$\begin{aligned} & \text { 3RF23 70-.BA. } 2 \\ & \text { 3RF23 70-.BA. } 4 \\ & \text { 3RF23 70-.BA. } 6 \end{aligned}$	70	70	62	27,5	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	83	0,5	10	1150	6600
$\begin{aligned} & \text { 3RF23 90-.BA. } 2 \\ & \text { 3RF23 90-.BA. } 4 \\ & \text { 3RF23 90-.BA. } 6 \end{aligned}$	88	88	80	30	$\begin{aligned} & 12001 / 4 \\ & 50 \% \text { ED } \end{aligned}$	117	0,5	10	1150	6600

1) Типовой ток отображает мощность полупроводникового контактора

Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа.

Полупроводниковые контакторы

Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные
Принципиальные электрические схемы

Питающее напряжение управления DC

Питающее напряжение
управления AC

Данные для выбора и заказа

Примечания к выбору
При выборе полупроводникового контактора необходимо учитывать данные сети, нагрузки и условия окружающей среды. Поскольку полупроводниковые контакторы уже оснащены оптимально подобранным радиаторами, их выбор выполняется значительно проще по сравнению с реле.

Другие номинальные питающие напряжения управления по запросу.

1) Типовой ток отображает мощность полупроводникового контактора Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа
Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.

Другие номинальные питающие напряжения управления -
по запросу.

1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий монтажа. Требуется снижение номинальных значений параметров (дерейтинг) см. в Руководстве, характеристики.
2) См. страницу $4 / 77$.

Полупроводниковые коммутационные аппараты для активных нагрузок
Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные

Другие номинальные питающие напряжения управления -
по запросу.

1) Типовой ток отображает мощность полупроводникового контактора Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа
Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.
2) Категория применения $\mathrm{AC}-15$:

Электромагнитные нагрузки, например, клапана по EN 60947-5. Параметры: макс. $12001 / 4,50 \%$ ED, ток включения 10 -кратный для 60 мс.

	$\text { Типовой ток }{ }^{1)}$ $I_{\max }$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Пружинные клем	$\begin{aligned} & \infty \\ & \square \end{aligned}$	ЕП (шт., кмпл., м)	Кол-во уп.*	Уп.
	A	B		Заказной номер	Цена € за ЕП			
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 24 ... 230 B								
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	DC 24 по EN 61131-2	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA02 } \\ & \text { 3RF23 20-2AA02 } \end{aligned}$	$\begin{aligned} & 51,90 \\ & 54,10 \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	AC 110 ... 230	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA22 } \\ & \text { 3RF23 20-2AA22 } \end{aligned}$	$\begin{aligned} & \mathbf{5 5 , 8 0} \\ & 58,10 \end{aligned}$	1	$\begin{aligned} & \hline 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$
3RF23 20-2								
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 460 B								
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	DC 24 по EN 61131-2	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA04 } \\ & \text { 3RF23 20-2AA04 } \end{aligned}$	$\begin{aligned} & 55,90 \\ & 58,90 \end{aligned}$	1 1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	AC 110 ... 230	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA24 } \\ & \text { 3RF23 20-2AA24 } \end{aligned}$	$\begin{aligned} & 59,80 \\ & 62,80 \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \\ & \hline \end{aligned}$
Коммутация в нулевой точке, запирающее напрғжение 1600 В, номинальное рабочее напряжение U_{e} AC $48 \ldots 600$ в								
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	DC 24 по EN 61131-2	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA06 } \\ & \text { 3RF23 20-2AA06 } \end{aligned}$	$\begin{aligned} & 65,80 \\ & 70,- \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$
	$\begin{aligned} & 10,5 \\ & 20 \end{aligned}$	AC 110 ... 230	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA26 } \\ & \text { 3RF23 20-2AA26 } \end{aligned}$	$\begin{aligned} & 69,80 \\ & 73,90 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \\ & \hline \end{aligned}$
Исполнение Low Noise ${ }^{23}$, коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 24 .. 230 B								
	20	DC 24 по EN 61131-2	B	3RF23 20-2CA02	66,10	1	1 шт.	101
	20	AC 110 ... 230	B	3RF23 20-2CA22	69,90	1	1 шт.	101
Low Noise ${ }^{\text {23 }}$, коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC $48 \ldots 460$ B								
	20	DC 24 по EN 61131-2	B	3RF23 20-2CA04	70,70	1	1 шт.	101
	20	AC 110 ... 230	B	3RF23 20-2CA24	74,70	1	1 шт.	101
Устойчив к коротким замыканиям при зъщите автоматическим выключателем с характеристикой В, коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 24 ... 230 B								
	20	AC 110 ... 230	B	3RF23 20-2DA22	71,90	1	1 шт.	101
Устойчивы к коротким замыканиям при защите автоматическим выключателем с характеристикой В, коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 460 B								
	20	DC 24 по EN 61131-2	B	3RF23 20-2DA04	70,90	1	1 шт.	101
	20	AC 110 ... 230	B	3RF23 20-2DA24	77,90	1	1 шт.	101

Другие номинальные питающие напряжения управления -
по запросу.

1) Типовой ток отображает мощность полупроводникового контактора

Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа
Требуется снижение номинальных значений параметров (дерейтинг)
см. руководство.
2) См. страницу $4 / 77$.

Полупроводниковые контакторы

Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные

	Типовой ток ${ }^{1)}$ $I_{\text {max }}$	Управляющее номинальное напряжение питания U_{s}	Кл. пост.	Клеммы для подключения проводников с кольцевыми кабельными наконечниками	(1)	ЕП (шт., кмпл., м)	$\begin{array}{r} \text { Kол-во } \\ \text { уп.* } \end{array}$	Уп.			
	A	B		Заказной номер	Цена € за ЕП						
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 24 ... 230 B											
3RF23 30-3	10,5 20 30 40 50 70 88	DC 24 по EN 61131-2	B B B B B A B	3RF23 10-3AA02 3RF23 20-3AA02 3RF23 30-3AA02 3RF23 40-3AA02 3RF23 50-3AA02 3RF23 70-3AA02 3RF23 90-3AA02	49,70 52,20 56,10 65,- 69,50 106,-- 170,--	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & 1 \text { шт. } \\ & 1 \\ & 1 ~ ш \tau . \\ & 1 \\ & 1 ~ ш \tau . \\ & 1 ~ ш \tau . ~ \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & \hline \end{aligned}$			
	10,5	AC 110 ... 230	B	3RF23 10-3AA22	53,60		1 шт.	101			
	20		B	3RF23 20-3AA22	55,90	1	1 шт.	101			
	30		B	3RF23 30-3AA22	60,-	1	1 шт.	101			
	40		B	3RF23 40-3AA22	69,10	1	1 шт.	101			
	50		B	3RF23 50-3AA22	73,50	1	1 шт.	101			
	70		B	3RF23 70-3AA22	110,--	1	1 шт.	101			
	88		B	3RF23 90-3AA22	173,--	1	1 шт.	101			
Kоммутация в нулевой точке,номинальное рабочее напряжение U_{e} AC 48 ... 460 B											
	10,5	DC 24 по EN 61131-2	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RF23 10-3AA04 3RF23 20-3AA04 3RF23 30-3AA04 3RF23 40-3AA04 3RF23 50-3AA04 3RF23 70-3AA043RF23 90-3AA04 3RF23 90-3AA04	$\begin{array}{r} 53,70 \\ 56,50 \\ 60,90 \\ 70,60 \\ 75,80 \\ 110,-- \\ 171,-- \end{array}$	1111111		$\begin{aligned} & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & 101 \\ & \hline \end{aligned}$			
	20										
	30										
	40										
	50										
	70										
	88										
	10,5	AC 110 ... 230	BBBBBBB	3RF23 10-3AA24 3RF23 20-3AA24 3RF23 30-3AA24 3RF23 40-3AA24 3RF23 50-3AA24 3RF23 70-3AA24 3RF23 90-3AA24	$\begin{array}{r} 57,50 \\ 60,30 \\ 64,80 \\ 74,90 \\ 79,90 \\ 113,-- \\ 174,-- \end{array}$	1	1 шт.	101			
	20					1	1 шт.	101			
	30					1	1 шт.	101			
	40					1	1 шт.	101			
	50					1	1 шт.	101			
	70					1	1 шт.	101			
	88					1	1 шт.	101			
	20	DC $4 \ldots 30$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF23 20-3AA44 3RF23 30-3AA44 3RF23 50-3AA44	$\begin{aligned} & 56,50 \\ & 60,90 \\ & 75,80 \\ & \hline \end{aligned}$		1 1 шт. 101 1 1 шт. 101 1 1 шт. 101				
	30					1					
	50										
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 600 B											
	40	DC $4 . . .30$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	3RF23 40-3AA45 3RF23 70-3AA45 3RF23 90-3AA45	$\begin{array}{r} 76,30 \\ \text { 115,-- } \\ \text { 174,-- } \end{array}$	111	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	101 101 101			
	70										
	88										
Коммутация в нулевой точке, запирающее напряжение 1600 B,номинальное рабочєе напряжение U_{e} AC $48 \ldots 600$ B											
	10,5	DC 24 по EN 61131-2	B	3RF23 10-3AA06	63,-	1	1 шт.	101			
	20		B	3RF23 20-3AA06		1	1 шт.	101101			
	30		B	3RF23 30-3AA06	$\begin{aligned} & 67,20 \\ & 73,30 \end{aligned}$	1	$\begin{array}{lll}1 \text { שт. } & 10 \\ 1 \text { шт. } & 10\end{array}$				
	40		B	3RF23 40-3AA06	$\begin{aligned} & 73,30 \\ & 84,80 \end{aligned}$	1		$\begin{array}{lll}1 \text { шт } & 101 \\ 1 & \text { שт } & 101\end{array}$			
	50		B	3RF23 50-3AA06	84,80 89	1	$\begin{array}{ll}1 \text { шт } & 101 \\ 1 \text { шт } & 101\end{array}$				
	70		B	3RF23 70-3AA06	126,--						
	88		B	3RF23 90-3AA06	186,--	1	1 шт.				
	10,5	AC 110 ... 230	B	3RF23 10-3AA26	67,-	1	1 шт. 101				
	20		B	$\begin{aligned} & \text { 3RF23 20-3AA26 } \\ & \text { 3RF23 30-3AA26 } \end{aligned}$	71,20	1	1 шт. 101				
	30		B		$\begin{aligned} & 77,20 \\ & 88,70 \end{aligned}$		$\begin{array}{ll} 1 \text { шт. } & 101 \\ 1 \text { шт. } & 101 \end{array}$				
	40		B	3RF23 30-3AA26 3RF23 40-3AA26		1					
	50		B	$\begin{aligned} & \text { 3RF23 50-3AA26 } \\ & \text { 3RF23 70-3AA26 } \end{aligned}$	93,20$130,-$	1	$\begin{array}{ll} 1 \\ 1 \text { шт. } & 101 \\ 1 \text { шт. } & 101 \end{array}$				
	70		A			1					
	88			$\begin{aligned} & \text { 3RF23 70-3AA26 } \\ & \text { 3RF23 90-3AA26 } \end{aligned}$	188,--	1	1 шт. 101				

Другие номинальные питающие напряжения управления по запросу.

1) Типовой ток отображает мощность полупроводникового контактора Фактически допустимый номинальный рабочий ток I_{e} Может быть меньше, в зависимости от вида подключения и условий монтажа Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.

Полупроводниковые коммутационные аппараты для активных нагрузок Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF23, 1-фазные

Другие номинальные питающие напряжения управления -

по запросу.

1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий монтажа. Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.
2) Категория применения AC-15:

Электромагнитные нагрузки, например, клапана по EN 60947-5. Параметры: макс. $12001 / 4,50 \%$ ED, ток включения 10 -кратный для 60 мс.

Технические данные

Заказной номер	Типовой ток	Номинальный рабочий ток $I_{\text {e }}$		Потери мощности при $I_{\mathrm{AC}-51}$	Минимальный ток нагрузки	Макс. ток утечки	Расчетная импульсная прочность $I_{\text {tsm }}$	$I^{2} t$-значение
	$I_{\mathrm{AC}-51}$ при $40^{\circ} \mathrm{C}$	по IEC 60947-4-3 при $40^{\circ} \mathrm{C}$	по UL/CSA при $50^{\circ} \mathrm{C}$					
	A	A	A	Bt	A	MA	A	$\mathrm{A}^{2} \mathrm{~s}$
Силовая цепь								
3RF24 10-.AB. 5	10,5	7	7	23	0,1	10	200	200
3RF24 20-.AB. 5	22	15	15	44	0,5	10	600	1800
3RF24 30-.AB. 5	30	22	22	61	0,5	10	1200	7200
3RF24 40-.AB. 5	40	30	30	80	0,5	10	1150	6600
3RF24 50-AB. 5	50	38	38	107	0,5	10	1150	6600
3RF24 10-.AC. 5	10,5	7	7	31	0,1	10	300	450
3RF24 20-.AC. 5	22	15	15	66	0,5	10	600	1800
3RF24 30-.AC. 5	30	22	22	91	0,5	10	1200	7200
3RF24 40-.AC. 5	40	30	30	121	0,5	10	1150	6600
3RF24 50-.AC. 5	50	38	38	160	0,5	10	1150	6600

1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток I_{e} может быть
меньше, в зависимости от вида подключения и условий монтажа.

Заказной номер	Типовой ток AC-51	Габариты (Ш \times В x Г) (вкл. радиатор)	Заказной номер	Типовой ток AC-51	Габариты (Ш x B x Г) (вкл. радиатор)
	A			A	
Силовая цепь			Силовая цепь		
3RF24 10-.AB.. 3RF24 10-.AC.	10,5	$45 \times 100 \times 105$	3RF24 30-AC.. 3RF24 40-.AB..	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$113,5 \times 100 \times 121$
3RF24 20-.AB..	22	$67 \times 100 \times 112,5$	3RF24 40-.AC..	40	$157,5 \times 100 \times 121$
3RF24 20-.AC..	22	$89.5 \times 100 \times 112,5$	3RF24 50-.AB..	50	
3RF24 30-.AB..	30		3RF24 50-.AC..	50	$157,5 \times 180 \times 121$

Тип		3RF24 ...-AB. 5	3RF24 ...-AC. 5
Силовая цепь			
Управляемые фазы		2-фазные	3-фазные
Номинальное рабочее напряжение U_{e}	AC B	48 ... 600	48 ... 600
- Рабочий диапазон	AC B	$40 . . .660$	$40 . . .660$
- Номинальная частота	Гц	$50 / 60 \pm 10$ \%	$50 / 60 \pm 10$ \%
Номинальное напряжение изоляции U_{i}	B	600	600
Расчетная импульсная прочность $U_{\text {imp }}$	кB	6	6
блокирующее напряжение	B	1200	1200
Крутизна подъема напряжения	В/мкс	1000	1000

Тип		3RF24 ..-... 3.	3RF24 ..-.. 4.	3RF24 ..-... 5.
山епь управления				
Род управляющего напряжения		Управление AC	Управление DC	Управление AC
Номинальное питающее напряжение управления U_{s}	B	110	$4 \ldots 30$	190 ... 230
Номинальная частота питающего напряжения управления	Гц	$50 / 60 \pm 10 \%$	--	50/60 $\pm 10 \%$
Напряжение управления, макс.	B	121	30	253
Типовые токи	MA	15	30	15
Напряжение срабатывания	B	90	4	180
Напряжение отпускания	B	< 40	<1	< 40
Время коммутации				
- Задержка включения	MC	40 + макс. одна полуволна	1 + макс. одна полуволна	40 + макс. одна полуволна
- Задержка отключения	MC	40 + макс. одна полуволна	1 + макс. одна полуволна	40 + макс. одна полуволна

Полупроводниковые коммутационные аппараты для активных нагрузок Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF24, 3-фазные
Принципиальные электрические схемы
2-фазное управление,
Питающее напряжение управления DC

2-фазное управление,
Питающее напряжение управления AC

3-фазное управление,
Питающее напряжение управления DC

3-фазное управление,
Питающее напряжение управления AC

Данные для выбора и заказа

	Типовой ток ${ }^{1)}$ $I_{\text {max }}$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Винтовые клеммы	()	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	$\begin{aligned} & \text { Kол-во } \\ & \text { уп.* } \end{aligned}$	Уп.
	A	B		Заказной номер	Цена € за ЕП			
Коммутация в нулевой точке,номинальное рабочее напряжение U_{e} AC 48 ... 600 B								
	2-фазное у							
	10,5	DC $4 \ldots 30$	A	3RF24 10-1AB45	119,--	1	1 шт.	101
,	20		A	3RF24 20-1AB45	132,--	1	1 шт.	101
6	30		A	3RF24 30-1AB45	143,--	1	1 шт.	101
	40		B	3RF24 40-1AB45	160,--	1	1 шт.	101
	50		A	3RF24 50-1AB45	180,--	1	1 шт.	101
	10,5	AC 110	B	3RF24 10-1AB35	123,--	1	1 шт.	101
	20		B	3RF24 20-1AB35	135,--	1	1 шт.	101
	30		B	3RF24 30-1AB35	147,--	1	1 шт.	101
ec	40		B	3RF24 40-1AB35	163,--	1	1 шт.	101
3RF24 20-1AB45	50		B	3RF24 50-1AB35	184,--	1	1 шт.	101
	10,5	AC 230	B	3RF24 10-1AB55	123,--	1	1 шт.	101
	20		B	3RF24 20-1AB55	135,--	1	1 шт.	101
	30		B	3RF24 30-1AB55	147,--	1	1 шт.	101
	40		B	3RF24 40-1AB55	163,--	1	1 шт.	101
	50		B	3RF24 50-1AB55	184,--	1	1 шт.	101
	3-фазное управление							
	10,5	DC $4 \ldots 30$	A	3RF24 10-1AC45	145,--	1	1 шт.	101
	20		A	3RF24 20-1AC45	161,--	1	1 шт.	101
\%	30		A	3RF24 30-1AC45	180,--	1	1 шт.	101
	40		A	3RF24 40-1AC45	200,--	1	1 шт.	101
	50		A	3RF24 50-1AC45	226,--	1	1 шт.	101
	10,5	AC 110	B	3RF24 10-1AC35	148,--	1	1 шт.	101
	20		B	3RF24 20-1AC35	164,--	1	1 шт.	101
	30		B	3RF24 30-1AC35	184,--	1	1 шт.	101
e e	40		B	3RF24 40-1AC35	204,--	1	1 шт.	101
3RF24 10-1AC45	50		B	3RF24 50-1AC35	229,--	1	1 шт.	101
	10,5	AC 230	B	3RF24 10-1AC55	148,--		1 шт.	101
	20		B	3RF24 20-1AC55	164,--	1	1 шт.	101
	30		B	3RF24 30-1AC55	184,--	1	1 шт.	101
	40		B	3RF24 40-1AC55	204,--	1	1 шт.	101
	50		B	3RF24 50-1AC55	229,--	1	1 шт.	101

[^1]Полупроводниковые коммутационные аппараты для активных нагрузок Полупроводниковые контакторы
Полупроводниковые контакторы SIRIUS
3RF24, 3-фазные

	$\begin{aligned} & \text { Типовой ток }{ }^{1)} \\ & I_{\text {max }} \end{aligned}$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Пружинные клемм	$\begin{aligned} & \infty \\ & \square \end{aligned}$	ЕП (шт., кмпл., м)	Кол-во уп.*	Уп.	
	A	B		Заказной номер	Цена € за ЕП				
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 600 B									
	2-фазное управление								
13020	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	DC $4 \ldots 30$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	3RF24 10-2AB45 3RF24 20-2AB45	$\begin{aligned} & 124,-- \\ & 137,- \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	
${ }^{2}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	AC 230	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	3RF24 10-2AB55 3RF24 20-2AB55	$\begin{aligned} & \hline 129,-- \\ & 140,-- \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \\ & \hline \end{aligned}$	
	3-фазное управление								
1°	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	DC $4 \ldots 30$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF24 10-2AC45 } \\ & \text { 3RF24 20-2AC45 } \end{aligned}$	$\begin{aligned} & \text { 151,-- } \\ & \text { 169,-- } \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	
	20	AC 230	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	3RF24 10-2AC55 3RF24 20-2AC55	$\begin{aligned} & 155,-- \\ & \text { 172,-- } \end{aligned}$	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	
3RF24 10-2AB45	$\begin{aligned} & \text { Tиповой ток }{ }^{1)} \\ & I_{\text {mav }} \end{aligned}$	Номинальное питающее напряжение управления U_{s}	Кл. пост.	Клеммы для подключения проводников с кольцевыми кабельными наконечниками	(ЕП (шт.,Кмпл., м)	Кол-во уп.*	Уп.	
	A	B		Заказной номер	Цена € за ЕП				
Коммутация в нулевой точке, номинальное рабочее напряжение U_{e} AC 48 ... 600 B									
	2-фазное управление			3RF24 50-3AB45	180,--	1	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	101101	
	50	DC $4 \ldots 30$	B						
	50	AC 230	B	3RF24 50-3AB55	184,--				
	3-фазное управление		B	3RF24 50-3AC45 3RF24 50-3AC55	226,--	1	$1 \text { шт. } 101$		
	50	DC $4 \ldots 30$							
	50	AC 230	B				1 шт.	101	

1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток I_{e} может быть меньше, в зависимости от вида подключения и условий монтажа. Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.

Полупроводниковые коммутационные аппараты для активных нагрузок

Функциональные модули 3RF29
Общая информация

O6зор

Функциональные модули для полупроводниковых коммутационных аппаратов SIRIUS 3RF2

Опциональные дополнительные модули позволяют расширить функционал полупроводниковых коммутационных аппаратов. Монтаж модулей выполняется простым защелкиванием на полупроводниковых реле или контакторах, при этом обеспечивается, как механическая фиксация модулей, так и электрическое соединение без дополнительных проводов.
Для управления полупроводниковыми коммутационными аппаратами используются втычные винтовые клеммы.

Предлагаются следующие функциональные модули:

- преобразователи сигналов
- контроль нагрузки
- контроль тока нагрева
- задатчики мощности
- регуляторы мощности

Функциональные модули (за исключением конвертера) могут использоваться только с 1-фазными полупроводниковыми коммутационными аппаратами.

Рекомендуемое соответствие функциональных модулей и 1 -фазных полупроводниковых реле $3 R F 21$

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности ${ }^{19}$	Регулятор мощности ${ }^{1)}$
Типовой ток $=20 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 20-1A. } 02 \\ & \text { 3RF21 20-1A. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-OEA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-OFA08 } \end{aligned}$	3RF29 20-0GA13 3RF29 20-0GA16	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 20-1A.22 } \\ & \text { 3RF21 20-1A. } 24 \end{aligned}$	--	--	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-1A.42 } \\ & \text { 3RF21 20-1A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
3RF21 20-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF21 20-2A. 02 3RF21 20-2A. 04	3RF29 00-0EA18 3RF29 00-0EA18	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-2A. } 22 \\ & \text { 3RF21 20-2A. } 24 \end{aligned}$	--	--	--		--	
$\begin{aligned} & \text { 3RF21 20-2A. } 42 \\ & \text { 3RF21 20-2A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-3A. } 02 \\ & \text { 3RF21 20-3A.04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	3RF29 20-0GA13 3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 20-3A. } 22 \\ & \text { 3RF21 20-3A. } 24 \end{aligned}$	--		3RF29 20-0GA33 3RF29 20-0GA36	--	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
ТИповой тоК $=30$ A						
3RF21 30-1A. 02 3RF21 30-1A. 04 3RF21 30-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-0HA16 3RF29 50-0HA16
3RF21 30-1A. 22 3RF21 30-1A. 24 3RF21 30-1A. 26	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$		3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-OGA36	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$	--	3RF29 50-OHA33 3RF29 50-0HA36 3RF29 50-0HA36
$\begin{aligned} & \hline \text { 3RF21 30-1A.42 } \\ & \text { 3RF21 30-1A.45 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 50-0GA13 3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-OHA16 } \end{aligned}$
3RF21 30-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
ТИповой тоК $=50 \mathrm{~A}$						
3RF21 50-1A. 02 3RF21 50-1A. 04 3RF21 50-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-0HA16 3RF29 50-OHA16
3RF21 50-1A. 22 3RF21 50-1A. 24 3RF21 50-1A. 26	--		3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36			3RF29 50-0НA33 3RF29 50-0НA36 3RF29 50-0HA36
3RF21 50-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
$\begin{aligned} & \hline \text { 3RF21 50-1B.04 } \\ & \text { 3RF21 50-1B.06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	$\begin{aligned} & \text { 3RF29 50-OHA16 } \\ & \text { 3RF29 50-OHA16 } \\ & \hline \end{aligned}$
3RF21 50-1B. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 50-2A. 02 3RF21 50-2A. 04 3RF21 50-2A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	--	--	--	
3RF21 50-2A. 14	3RF29 00-0EA18	--	--	--	--	--
3RF21 50-2A. 22 3RF21 50-2A. 24 3RF21 50-2A. 26	--	--	--	-- --	--	--
3RF21 50-3A. 02 3RF21 50-3A. 04 3RF21 50-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16
3RF21 50-3A. 22 3RF21 50-3A. 24 3RF21 50-3A. 26	--	--	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	--	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$	3RF29 50-0НA33 3RF29 50-0НA36 3RF29 50-0HA36

1) Применение задатчиков/регуляторов мощности также возможно для аппаратов в исполнении "коммутация в нулевой точке" для режима полноволнового управления. Режим фазового управления рекомендуется только для аппаратов в исполнении "мгновенная коммутация"

Полупроводниковые коммутационные аппараты для активных нагрузок Функциональные модули 3RF29

Общая информация

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности ${ }^{1)}$	Регулятор мощности ${ }^{1)}$
ТИповой тоК = 70 A						
3RF21 70-1A. 02 3RF21 70-1A. 04 3RF21 70-1A. 05 3RF21 70-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16 3RF29 50-OKA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16 3RF29 50-0HA16
3RF21 70-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0НA33
3RF21 70-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A. 45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 70-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-OHA16
3RF21 70-1C. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
ТИповой тоK $=90$ A						
3RF21 90-1 A. 02 3RF21 90-1A. 04 3RF21 90-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-0HA16 3RF29 50-0HA16
3RF21 90-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 90-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A. 45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-OHA16
3RF21 90-1B.04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 90-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 22	--	--	--	--	--	--
3RF21 90-2A. 24	--	--	--	--	--	--
3RF21 90-2A. 26	--	--	--	-	--	--
3RF21 90-3A. 02	3RF29 00-0EA18	--	3RF29 90-0GA13	--	--	3RF29 90-0HA13
3RF21 90-3A. 04	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A.06	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A. 22	--	--	3RF29 90-0GA33	--	--	3RF29 90-0HA33
3RF21 90-3A. 24	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 26	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 44	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16

1) Применение задатчиков/регуляторов мощности также возможно для аппаратов в исполнении "коммутация в нулевой точке" для режима
полноволнового управления. Режим фазового управления
рекомендуется только для аппаратов в исполнении "мгновенная
коммутация".
Рекомендуемое соответствие функциональных модулей и 3-фазных полупроводниковых реле 3RF22

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности	Регулятор мощности
ТИповой ток до 55 A						
3RF22 ..-1AA..	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-2AA..	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-3AA..	3RF29 00-0EA18	--	--	--	--	--

Рекомендуемое соответствие функциональных модулей и 1-фазных полупроводниковых реле 3RF23

| Заказной номер | Принадлежности
 Преобразователи
 сигналов | Контроль нагрузки
 Базовый | | Контроль тока
 нагрева | Задатчик мощности1) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Регулятор мощности1)

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности ${ }^{1)}$	Регулятор мощности ${ }^{1)}$
Типовой ток $I_{\text {e }}=10,5 \mathrm{~A}$						
3RF23 10-1B. 02 3RF23 10-1B. 04 3RF23 10-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 16-0JA13 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 20-0KA13 3RF29 20-0KA16 3RF29 20-0KA16	3RF29 20-0HA13 3RF29 20-0HA16 3RF29 20-0HA16
3RF23 10-1B. 22 3RF23 10-1B. 24 3RF23 10-1B. 26	--	--	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	--	--	3RF29 20-0НA33 3RF29 20-0HA36 3RF29 20-0HA36
3RF23 10-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 10-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 10-2A. 06	3RF29 00-0EA18	--	--		--	
3RF23 10-2A. 22	--	--	--	--	--	--
3RF23 10-2A. 24	--	--	--	-	--	--
3RF23 10-2A. 26	--	--	--	--	--	--
3RF23 10-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	3RF29 16-0JA13	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 10-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0НA33
3RF23 10-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
ТИповой тоК $I_{\text {e }}=20 \mathrm{~A}$						
3RF23 20-1A. 02 3RF23 20-1A. 04 3RF23 20-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 20-0KA13 3RF29 20-0KA16 3RF29 20-0KA16	3RF29 20-0HA13 3RF29 20-0HA16 3RF29 20-0HA16
3RF23 20-1A. 14	3RF29 00-0EA18	--	3RF29 20-0GA16	--	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0НA33
3RF23 20-1A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
$\begin{aligned} & \hline \text { 3RF23 20-1A. } 44 \\ & \text { 3RF23 20-1A. } 45 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA16 3RF29 20-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 20-0KA16 3RF29 20-0KA16	3RF29 20-0HA16 3RF29 20-0HA16
3RF23 20-1B.02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1B. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0НA36
3RF23 20-1B. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1B. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF23 20-1C. } 02 \\ & \text { 3RF23 20-1C. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0HA13 } \\ & \text { 3RF29 20-0HA16 } \end{aligned}$
3RF23 20-1C. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1C. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1C. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF23 20-1D.02 } \\ & \text { 3RF23 20-1D.04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0HA13 } \\ & \text { 3RF29 20-0HA16 } \end{aligned}$
3RF23 20-1D. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1D. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0НA36
3RF23 20-1D. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 22	--	--	--	--	--	--
3RF23 20-2A. 24	--	--	--	--	--	--
3RF23 20-2A. 26	--	--	--	--	--	--
3RF23 20-2C. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 22	--	--	--	--	--	--
3RF23 20-2C. 24	--	--	--	--	--	--
3RF23 20-2D. 22	--	--	--	--	--	--
3RF23 20-2D. 24	--	--	--	--	--	--
3RF23 20-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0НA33
3RF23 20-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A. 44	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16

1) Применение задатчиков/регуляторов мощности также возможно для аппаратов в исполнении "коммутация в нулевой точке" для режима
полноволнового управления. Режим фазового управления
рекомендуется только для аппаратов в исполнении "мгновенная
коммутация".

Полупроводниковые коммутационные аппараты для активных нагрузок Функциональные модули 3RF29

Общая информация

Заказной номер	Принадлежности Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности ${ }^{1 /}$	Регулятор мощности ${ }^{1)}$
ТИповой ток $I_{\text {e }}=20 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF23 20-3D.02 } \\ & \text { 3RF23 20-3D.04 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	$\begin{aligned} & -- \\ & -- \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OGA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-0HA16 } \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 20-3D.22 } \\ & \text { 3RF23 20-3D.24 } \end{aligned}$	--	--	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	--	--	$\begin{aligned} & \text { 3RF29 20-0HA33 } \\ & \text { 3RF29 20-0HA36 } \end{aligned}$
ТИповой ток $I_{\text {e }}=30 \mathrm{~A}$						
3RF23 30-1A. 02 3RF23 30-1A. 04 3RF23 30-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16
3RF23 30-1A. 14	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0НA33
3RF23 30-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-1A. 25	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-1A. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1A. 45	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1B. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA13	--		3RF29 50-0HA13
3RF23 30-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1B. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1B. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF23 30-1B. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-1B. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-1B. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-1C. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA13	--	--	3RF29 50-0HA13
3RF23 30-1D. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-3A. 02	3RF29 00-0EA18	--	3RF29 50-0GA13	-		3RF29 50-0HA13
3RF23 30-3A. 04	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-3A. 06	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 30-3A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF23 30-3A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-3A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 30-3A. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-OHA16
ТИпОВой тоК $I_{\text {e }}=40 \mathrm{~A}$						
3RF23 40-1A. 02	3RF29 00-0EA18	--	3RF29 50-0GA13	--	--	3RF29 50-0HA13
3RF23 40-1A. 04	3RF29 00-0EA18	--	3RF29 50-0GA16	-	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1A. 06	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1A. 14	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF23 40-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 40-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 40-1A. 45	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1B. 02	3RF29 00-0EA18	--	3RF29 50-0GA13	--	--	3RF29 50-0HA13
3RF23 40-1B. 04	3RF29 00-0EA18	--	3RF29 50-0GA13	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1B. 06	3RF29 00-0EA18	--	3RF29 50-0GA13	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-1B. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF23 40-1B. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 40-1B. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 40-3A. 02	3RF29 00-0EA18	--	3RF29 50-0GA13	--	--	3RF29 50-0HA13
3RF23 40-3A. 04	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-3A. 06	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 40-3A. 22	--	--	3RF29 50-0GA33	--		
3RF23 40-3A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0НA36
3RF23 40-3A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 40-3A. 45	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
ТИповоЙ ток $I_{\text {e }}=50 \mathrm{~A}$						
3RF23 50-1A. 02	3RF29 00-0EA18	--	3RF29 50-0GA13	--	--	3RF29 50-0HA13
3RF23 50-1A. 04	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 50-1A. 06	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 50-1A. 14	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 50-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0НA33
3RF23 50-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 50-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF23 50-1A.45	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-OHA16

1) Применение задатчиков/регуляторов мощности также возможно для

аппаратов в исполнении "коммутация в нулевой точке" для режима
полноволнового управления. Режим фазового управления
рекомендуется только для аппаратов в исполнении "мгновенная
коммутация".

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности ${ }^{1)}$	Регулятор мощности ${ }^{1)}$
ТИповой ток $I_{\text {e }}=50 \mathrm{~A}$						
3RF23 50-1B.02 3RF23 50-1B. 04 3RF23 50-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	--	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-0HA16 3RF29 50-OHA16
3RF23 50-1B. 22 3RF23 50-1B. 24 3RF23 50-1B. 26	--	--	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	--		3RF29 50-0НА 33 3RF29 50-0HA36 3RF29 50-0HA36
3RF23 50-1B. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
3RF23 50-3A. 02 3RF23 50-3A. 04 3RF23 50-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18		3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16		3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16
3RF23 50-3A. 22 3RF23 50-3A. 24 3RF23 50-3A. 26	--		3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	--	3RF29 50-OHA33 3RF29 50-0НA36 3RF29 50-0HA36
3RF23 50-3A. 44	3RF29 00-0EA18	--	3RF29 50-0GA16	--	3RF29 50-0KA16	3RF29 50-0HA16
ТИповой ток $I_{\text {e }}=70 \mathrm{~A}$						
3RF23 70-1B. 02 3RF23 70-1B. 04 3RF23 70-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18		3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	--	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-OHA16 3RF29 50-OHA16
3RF23 70-1B. 22 3RF23 70-1B. 24 3RF23 70-1B. 26	--	--	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	--	--	3RF29 50-OHA33 3RF29 50-0НA36 3RF29 50-0HA36
3RF23 70-3A. 02 3RF23 70-3A. 04 3RF23 70-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-0GA16		3RF29 90-OKA16 3RF29 90-0KA16	3RF29 90-0HA13 3RF29 90-0HA16 3RF29 90-OHA16
3RF23 70-3A. 22 3RF23 70-3A. 24 3RF23 70-3A. 26	--		3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$	--	3RF29 90-OHA33 3RF29 90-0НA36 3RF29 90-0НA36
3RF23 70-3A.45	3RF29 00-0EA18	--	3RF29 90-0GA16	--	3RF29 90-0KA16	3RF29 90-0HA16
3RF23 70-3B. 02 3RF23 70-3B. 04 3RF23 70-3B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-0GA16	-- --	3RF29 90-0KA16 3RF29 90-0KA16	3RF29 90-0HA13 3RF29 90-0HA16 3RF29 90-OHA16
3RF23 70-3B. 22 3RF23 70-3B. 24 3RF23 70-3B. 26	--	--	3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36	-- --	--	3RF29 90-OHA33 3RF29 90-0HA36 3RF29 90-0HA36
ТИповой ток $I_{\text {e }}=90 \mathrm{~A}$						
3RF23 90-1B. 02 3RF23 90-1B. 04 3RF23 90-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	--	3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-OHA16
3RF23 90-1B. 22 3RF23 90-1B. 24 3RF23 90-1B. 26	--	--	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$	--	3RF29 50-OHA33 3RF29 50-0НA36 3RF29 50-0HA36
3RF23 90-3A. 02 3RF23 90-3A. 04 3RF23 90-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-0GA16	--	3RF29 90-0KA16 3RF29 90-0KA16	3RF29 90-0HA13 3RF29 90-0HA16 3RF29 90-OHA16
3RF23 90-3A. 22 3RF23 90-3A. 24 3RF23 90-3A. 26	--	--	3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36	--	--	3RF29 90-OHA33 3RF29 90-OHA36 3RF29 90-0НA36
3RF23 90-3A.45	3RF29 00-0EA18	--	3RF29 90-0GA16	--	3RF29 90-0KA16	3RF29 90-0HA16
3RF23 90-3B. 02 3RF23 90-3B. 04 3RF23 90-3B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-OGA16	--	3RF29 90-0KA16 3RF29 90-0KA16	3RF29 90-OHA13 3RF29 90-0HA16 3RF29 90-OHA16
3RF23 90-3B. 22 3RF23 90-3B. 24 3RF23 90-3B. 26	--	--	3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36	--	--	3RF29 90-0НА33 3RF29 90-0HA36 3RF29 90-0HA36

1) Применение задатчиков/регуляторов мощности также возможно для аппаратов в исполнении "коммутация в нулевой точке" для режима полноволнового управления. Режим фазового управления
рекомендуется только для аппаратов в исполнении "мгновенная
коммутация".
Рекомендуемое соответствие функциональных модулей и 3-фазных полупроводниковых реле 3RF24

Заказной номер	Принадлежности					
	Преобразователи сигналов	Контроль нагрузки Базовый	Расширенный	Контроль тока нагрева	Задатчик мощности	Регулятор мощности
Типовой ток до 50 A						
3RF24 .-1.4.	3RF29 00-0EA18	--	--	--	--	--
3RF24 ..-2..4.	--	--	--	--	--	--
3RF24 ..-3..4.	3RF29 00-0EA18	--	--	--	--	--
3RF24 ..- ...5.	--	--	--	--	--	--

Полупроводниковые коммутационные аппараты для активных нагрузок

 Функциональные модули 3RF29
Общая информация

Технические данные

Тип Габариты (Ш x В x Г)	MM	$\begin{aligned} & \text { 3RF29 ..-0EA.. } \\ & 22,5 \times 84 \times 38 \end{aligned}$	3RF29 ..-0FA.. $22,5 \times 102 \times 39$	$\begin{aligned} & \text { 3RF29 ..-0GA.. } \\ & 45 \times 112 \times 44 \end{aligned}$	$\begin{aligned} & \text { 3RF29 ..-OHA.. } \\ & 45 \times 112 \times 44 \end{aligned}$	3RF29 ..-0JA.. $45 \times 112 \times 44$	$\begin{aligned} & \text { 3RF29 ..-OKA.. } \\ & 45 \times 112 \times 44 \end{aligned}$
Общая информация							
Температура окружающей среды - при эксплуатации (требуется снижение номинальных значений параметров (дерейтинг) с $40^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$					
- при хранении	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$					
Высота установки	M	$0 . . .1000$; треб	ется снижение	минальных зн	чений параметр	в (дерейтинг)	c 1000
Ударопрочность по IEC 60068-2-27	г/MC	15/11					
Вибростойкость по IEC 60068-2-6	Γ	2					
Степень защиты IP		IP20					
Электромагнитная совместимость (ЭМС) (ЭМС)							
- Излучение							
- напряжение помех, обусловленное параметрами линий по IEC 60947-4-3		Класс А для пр	мышленности ${ }^{1)}$				
- излучаемое, высокочастотное напряжение помех по IEC 60947-4-3		Класс В для жи	лых, офисных по	мещений			
- Помехоустойчивость							
```- электростатический разряд по IEC 61000-4-2 (соответствует степени резкости 3)```	kB	Разряд контакт	ов 4; разряд по	воздуху 8; крите	ий поведения 2		
- наведенные ВЧ-поля по IEC 61000-4-6	МГц	0,15 ... 80; 140	Б В; критерий п	оведения 1			
- всплески по IEC 61000-4-4		2 кВ/5,0 кГц; кр	итерий поведения	я 2			
- импульс по IEC 61000-4-5	кB	Проводник - зе	мля 2; проводник	- проводник 1;	критерий поведе	ния 2	
Подключение, цепи управления, вспомогательные цепи							
- Сечение проводников	MM ${ }^{2}$	$1 \times(0,5 \ldots 2,5), 2$	x (0,5 ... 1,0), 1	$\times(A W G 20 . .12)$			
- Длина снимаемой изоляции	MM						
- Винты клемм							
- Момент затяжки	Нм	0,5 ... 0,6					
Преобразователь, сквозное отверстие   - Диаметр	MM	--	7	17			

1) Учитывайте ограничения для функциональных модулей задатчика и регулятора мощности! Эти модули изготавливаются как устройства класса А. Применение этих устройств в жилых помещениях может приводить к радиопомехам.

Тип		3RF29 ..-0EA18	3RF29 ..-0FA08	3RF29 ..-0GA. 3	3RF29 ..-0GA. 6
Силовая цепь					
Номинальное рабочее напряжение $U_{e}$   - Рабочий диапазон   - Номинальная частота	AC B AC B Гц	$\begin{aligned} & --1) \\ & -- \\ & -- \end{aligned}$		$\begin{aligned} & 110 \ldots 230 \\ & 93,5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$
Номинальное напряжение изоляции $U_{i}$	B	--		600	
Регистрация напряжения   - Диапазон измерения	B	--		93,5 ... 253	340 ... 660
Сетевое напряжение, колебание Компенсация	\%	--		20	
${ }^{1)}$ Исполнения не зависят от главной цепи					
Тип		$\begin{aligned} & \text { 3RF29 ..-OHA. } 3 \\ & \text { 3RF29 ..-OKA. } 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 .--0HA. } 6 \\ & \text { 3RF29 .--0KA. } 6 \\ & \hline \end{aligned}$	3RF29 ..-0JA. 3	3RF29 ..-0JA. 6
Силовая цепь					
Номинальное рабочее напряжение $U_{e}$   - Рабочий диапазон   - Номинальная частота	AC B AC B Гц	$\begin{aligned} & 110 \ldots 230 \\ & 93,5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots . .660 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 93,5 \ldots 253 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 . . .660 \end{aligned}$
Номинальное напряжение изоляции $\boldsymbol{U}_{\boldsymbol{i}}$	B	600			
Регистрация напряжения   - Диапазон измерения	B	93,5 ... 253	340 ... 660	93,5 ... 253	340 ... 660
Сетевое напряжение, компенсация колебаний	\%	20			

Полупроводниковые коммутационные аппараты для активных нагрузок Функциональные модули 3RF29

## Общая информация



Количество отдельных нагрузок

Принципиальные электрические схемы

Преобразователи сигналов


Контроль нагрузки, базовый


1) Interne Verbindung
2) Durchsteckwandler

Контроль нагрузки, расширенный


Контроль тока нагрева


Задатчик и регулятор мощности


* Заказывается указанное или кратное данному количество. Листовые цены на 2010/2011 ф.г. Иллюстрации приблизительные


## Полупроводниковые коммутационные аппараты для активных нагрузок

## Функциональные модули 3RF29

Преобразователи сигналов SIRIUS для 3RF2

## 06зор

Преобразователи сигналов для полупроводниковых коммутационных аппаратов 3RF2
В этом модуле аналоговые сигналы управления, как во многих регуляторах температуры, преобразуются в цифровые ШИМсигналы. Благодаря этому полупроводниковые контакторы и реле могут плавно задавать мощность нагрузки.

## Область применения

Этот функциональный модуль служит для преобразования аналогового входного сигнала в импульсное соотношение включения/отключения. Этот модуль может применяться только в сочетании с 1-фазными полупроводниковыми коммутационными аппаратами 3RF21, 3RF23 или 3-фазными устройствами 3RF22, 3RF24. Он может применяться с аппаратами, рассчитанными для питающего напряжения управления DC 24 В и 24B AC/DC.

Данные для выбора и заказа


## Полупроводниковые коммутационные аппараты для активных нагрузок

 Функциональные модули 3RF29
## Контроль нагрузки SIRIUS для 3RF2

## Oбзор

Контроль нагрузки для 1-фазных полупроводниковых коммутационных аппаратов 3RF2
Благодаря модулю контроля, легко распознаются неисправности цепи нагрузки, подключённой к полупроводниковому коммутационному аппарату. Например, отказ элементов нагрузки (до 6 в базовой версии и до 12 в расширенной), повреждение силовых полупроводников, отсутствие напряжения или обрыв в цепи нагрузки. Неисправность индицируется одним или несколькими светодиодами и через выход, совместимый с ПЛК, передается в вышестоящую систему управления.
Этот принцип контроля базируется на постоянном контроле силы тока. Это значение постоянно сравнивается с опорным значением, запомненным при вводе в эксплуатацию простым нажатием кнопки. Для распознавания отказа одной из нескольких нагрузок разность токов должна составить 1/6 (в базовой версии) или $1 / 12$ (в расширенной версии) опорного значения. В случае неисправности активируется выход, и один или несколько светодиодов индицируют неисправность.

## Область применения

Устройство предназначено для контроля одной или нескольких нагрузок (отдельные нагрузки). Этот модуль может применяться только в сочетании с полупроводниковым реле 3RF21 или полупроводниковым контактором 3RF23.
В цепи нагрузки не должны применяться устройства с пружинными клеммами!

## Данные для выбора и заказа



3RF29
Контроль нагрузки, модуль с расширенным функционалом


[^2]
## Полупроводниковые коммутационные аппараты для активных нагрузок

## Функциональные модули 3RF29

Контроль тока нагрева SIRIUS для 3RF2

## Обзор

Контроль тока нагрева для 1 - фазных полупроводниковых коммутационных аппаратов 3RF2
Благодаря модулю контроля нагрева, распознаются неисправности цепи нагрузки, подключённой к полупроводниковому коммутационному аппарату. Например, отказ элементов нагрузки (до 6 в базовой версии), повреждение силовых полупроводников, отсутствие напряжения или обрыв в цепи нагрузки. Неисправность индицируется светодиодами и через релейный выход (НЗконтакт) передаётся в вышестоящую систему управления.
Этот принцип контроля базируется на постоянном контроле силы тока. Это значение постоянно сравнивается с опорным значением, запомненным при вводе в эксплуатацию. Для распознавания отказа одной из нескольких нагрузок разность токов должна составить $1 / 6$ опорного значения. В случае неисправности активируется выход, и светодиоды индицируют неисправность.
Контроль тока нагрева отличается от контроля нагрузки наличием обучающего входа. Эта функция дистанционного обучения обеспечивает простое согласование с переменными нагрузками без ручного вмешательства.

Специсполнение:
Отклонения от стандартной версии
3RF29 ..-0JA1.-1KK0
Если во время процесса обучения ток становится ниже $50 \%$ от минимального тока обучения, то устройство переходит в режим "Standby" (Ожидание), светодиод "LOAD" (НАГРУЗКА) мигает. Тем самым прибор распознает отсутствие нагрузки, например, каналы не требуемые в нагревателях инструментов, и не сообщает об ошибке. Повторное обучение сбрасывает этот режим.

## Область применения

Устройство предназначено для контроля одной или нескольких нагрузок (отдельные нагрузки). Этот модуль может применяться только в сочетании с полупроводниковым реле 3RF21 или полупроводниковым контактором 3RF23.
В цепи нагрузки не должны применяться устройства с пружинными клеммами.

## Данные для выбора и заказа



1) Поставка без клеммы управления. При необходимости она может быть заказана в фирме Phoenix Contact, заказной номер 1982790 (2,5 HC/6-ST-5,08)

Исполнение	Кл. пост.	Заказной номер	Цена € за ЕП	$\begin{array}{r} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{array}$	Кол-во уп.*	Y

## Дополнительные принадлежности



Пломбируемая крышка
для опломбирования органов параметрирования

3RF29 00-ORA88	$\mathbf{2 , 3 0}$	1	10 шт.	101

функциональных модулей (не для конвертеров)

3RF29 00-ORA88

## Полупроводниковые коммутационные аппараты для активных нагрузок

 Функциональные модули 3RF29
## Задатчики мощности SIRIUS для 3RF2

## 06зор

Задатчик мощности для 1-фазных полупроводниковых коммутационных аппаратов 3RF2
Задатчик мощности - это функциональный модуль для независимого задания мощности для комплексных систем нагрева и индуктивных нагрузок.
В модуле интегрированы следующие функции:

- Задатчик мощности для регулирования мощности подключённой нагрузки. При этом заданное значение устанавливается поворотной кнопкой на модуле в процентах от запомненного значения $100 \%$ мощности.
- Ограничение тока включения: ток включения ограничивается настраиваемой рампой напряжения с помощью фазового управления. Это имеет смысл, прежде всего, для таких нагрузок, как например, лампы или ИК-излучатели с характерным броском пускового тока.
- Контроль цепи нагрузки для распознавания отказов нагрузки, неисправностей отдельных нагрузок, повреждения силовых полупроводников, отсутствия напряжения или обрыва цепи нагрузки.
Примечание
В режиме фазового управления происходит распознавание неисправности отдельной нагрузки путем циклического
"ощупывания" нагрузки; точное описание принципа работы приведено в технических паспортах!
Специсполнение:
Отклонения от стандартной версии


## 3RF29 04-0KA13-0KC0

В процессе обучения подключенное полупроводниковое реле или контактор не активируются, т.е. ток отсутствует. Опорное значение тока не запоминается. Контроль отдельных нагрузок не предусмотрен!
3RF29 ..-OKA1.-OKT0
Контроль отдельных нагрузок не предусмотрен!

## Область применения

Задатчик мощности применяется для:

- комплексных систем нагрева
- индуктивных нагрузок
- нагрузок с терморезистором
- нагрузок с большим сроком "старения"
- простого косвенного регулирования температуры

Задатчик мощности может использоваться
с полупроводниковыми коммутационными аппаратами с мгновенной коммутацией 3RF21 и 3RF23 (1-фазных). Если используется только режим полноволнового управления, то задатчик мощности также может применяться с полупроводниковыми реле и контакторами с коммутацией в нулевой точке.

## Задание мощности

Задатчик мощности регулирует ток в подключённой нагрузке с помощью полупроводникового коммутационного аппарата в соответствии с заданным значением. При этом изменения сетевого напряжения или сопротивления нагрузки не компенсируются. Заданное значение может устанавливаться извне сигналом от 0 до 10 В или внутри с помощью переключателя. В зависимости от положения переключателя ( $t_{R}$ ) управление осуществляется по принципу полноволнового управления или фазового управления

## Полноволновое управление

В этом режиме работы мощность регулируется на заданное значение изменением скважности импульса управления. При этом длительность периода остается постоянной и равной 1 секунде.

## Фазовое управление

В этом режиме работы мощность регулируется на заданное значение изменением угла отсечки фазы. Для соблюдения предельных значений напряжения помех для промышленных сетей, обусловленного параметрами линий, необходимо в цепи нагрузки применять дроссель не менее 200 мкГн.

Данные для выбора и заказа


## Полупроводниковые коммутационные аппараты для активных нагрузок

 Функциональные модули 3RF29
## Регуляторы мощности SIRIUS для 3RF2

## O6зор

Регулятор мощности для 1-фазных полупроводниковых коммутационных аппаратов 3RF2
Регулятор мощности - это функциональный модуль для независимого регулирования мощности комплексных систем нагрева.
Интегрированы следующие функции:

- Задатчик мощности с P-регулированием для настройки мощности подключённой нагрузки. При этом заданное значение устанавливается поворотной кнопкой на модуле в процентах от запомненного значения 100\% мощности. При этом компенсируются изменения сетевого напряжения или сопротивления нагрузки.
- Ограничение тока включения: ток включения ограничивается настраиваемой рампой напряжения с помощью фазового управления. Это имеет смысл, прежде всего, для таких нагрузок, как лампы с характерным броском пускового тока.
- Контроль цепи нагрузки для распознавания отказов нагрузки, неисправностей отдельных нагрузок, повреждения силовых полупроводников, отсутствия напряжения или обрыва в цепи нагрузки. Контроль отдельных нагрузок невозможен. Колебания нагрузки компенсируются.

Область применения
Регулятор мощности применяется для:

- комплексных систем нагрева
- нагревательных элементов с терморезистором
- нагревательных элементов с большим сроком "старения"
- простого косвенного регулирования температуры

Регулятор мощности может использоваться с полупроводниковыми коммутационными аппаратами с мгновенной коммутацией 3RF21 и 3RF23 (1-фазных). Если используется только режим полноволнового управления, то регулятор мощности также может применяться с полупроводниковыми реле и контакторами с коммутацией в нулевой точке

## Регулирование мощности

Регулятор мощности регулирует мощность подключённой нагрузки с помощью полупроводникового коммутационного аппарата в соответствии с мощностью, запомненной при обучении, и заданным значением. При этом регулятором мощности компенсируются изменения сетевого напряжения или сопротивления нагрузки. Заданное значение может устанавливаться извне сигналом от 0 до 10 В или с помощью поворотного переключателя. В зависимости от положения переключателя ( $t_{\mathrm{R}}$ ) управление осуществляется по принципу полноволнового управления или фазового управления.
Полное волновое управление
В этом режиме работы мощность регулируется на заданное значение изменением скважности импульса управления. При этом длительность периода остается постоянной и равной 1 секунде.

## Фазовое управление

В этом режиме работы мощность регулируется на заданное значение изменением угла отсечки фазы. Для соблюдения предельных значений напряжения помех для промышленных сетей, обусловленного параметрами линий, необходимо в цепи нагрузки применять дроссель не менее 200 мкГн.

Данные для выбора и заказа


## Oбзор

Полупроводниковые контакторы для коммутации электродвигателей


Полупроводниковый контактор прямого пуска
Полупроводниковые контакторы 3RF34 разработаны для частых коммутаций стандартных трехфазных асинхронных электродвигателей до $7,5 \mathrm{kBт}$ - для прямого пуска, а также до 3,0 кВт - для реверсивного. Эти устройства имеют изолированный корпус и могут монтироваться непосредственно на стандартную монтажную рейку или при помощи опционального переходного модуля на автоматические выключатели, реле защиты от перегрузки и реле контроля тока SIRIUS, благодаря чему обеспечивается простая интеграция контакторов в двигательные фидеры.
3-фазные полупроводниковые контакторы 3RF34-с
2-фазной системой управления (силовые тиристоры расположены в 2-х фазах), которая особенно пригодна для типичных цепей с электродвигателями без соединения с нейтралью.
Основные признаки:

- изолированный корпус с интегрированным радиатором
- степень защиты IP20
- основание контактора позволяет монтировать контактор на DIN-рейке или на монтажной плате
- исполнения с различными вариантами присоединений
- втычные клеммы цепи управления
- индикация состояния встроенным светодиодом
- исполнения с широким диапазоном напряжений при AC питающем напряжении управления: 110-230 В AC или 24B DC.


## Тип коммутации

Полупроводниковые контакторы для коммутации электродвигателей являются приборами "с мгновенной коммутацией", так как этот метод применим для индуктивных нагрузок. Благодаря распределению точек включения по всей синусоиде сетевого напряжения помехи снижаются до минимума.

## Системы присоединений

Полупроводниковые контакторы для коммутации электродвигателей имеют следующие варианты клемм:

## Винтовые клеммы

Винтовые клеммы являются стандартом для низковольтных коммутационных аппаратов. Открытые клеммы и винт под крестовую и шлицевую отвертки - это только два признака этой технологии. K одной такой клемме можно присоединить два проводника до 6 кв. мм.

## Пружинные клеммы

Эта инновационная технология не использует винтовых присоединений, благодаря чему обеспечивается высокая вибростойкость. Кодной клемме можно присоединить два проводника до 2,5 кв. мм.

## Двигательные фидеры

Эти устройства могут подключаться к автоматическому выключателю с помощью опционального соединительного модуля. Также с помощью соединительного модуля возможен монтаж на контактор электронного реле защиты от перегрузки 3RB30/3RB31 (см. главу 5 "Устройства защиты") или реле контроля тока 3RR2 (см. главу 8 "Устройства контроля и управления"). Применение соединительных модулей обеспечивает быстрый монтаж двигательных фидеров с предохранителями или без них. Одновременная установка автоматического выключателя и контактора с реле контроля перегрузки или реле контроля тока 3RR не рекомендуется изза большой высоты сборки и возможности перегрева.

## Выбор полупроводникового контактора

Полупроводниковые контакторы выбираются исходя из данных о силовой сети, нагрузке и условиях окружающей среды.
Рекомендуется следующий порядок действий:

- определение номинального тока нагрузки (номинальный рабочий ток двигателя) и сетевого напряжения
- выбор полупроводникового контактора с номинальной силой тока равным или большим, чем ток нагрузки
- проверка максимально допустимой частоты коммутаций на основе характеристик (см. ссылку на техническую информацию, стр. 4/1). Для этого должны быть известны пусковой ток, время пуска и ток двигателя в рабочем режиме.
- если допустимая частота коммутаций ниже требуемой, то ее увеличение можно обеспечить выбором двигателя и полупроводникового контактора с запасом!
Альтернативно можно использовать инструмент "Выбор полупроводникового контактора для коммутации электродвигателей". Типоразмер устройства может быть определен после ввода параметров двигателя, сети и окружающей среды, а также условий эксплуатации.
Инструмент можно найти в Интернете на веб-сайте
www.siemens.de/halbleiterschaltgeraete
Защита от токов короткого замыкания
Несмотря на применение надежной полупроводниковой силовой электроники, полупроводниковые коммутационные аппараты чувствительны к коротким замыканиям в фидере. Поэтому, ввиду особенностей конструкции полупроводниковых контакторов, необходимы особые меры по их защите от токов K3.
Компания Siemens рекомендует применение специальных предохранителей типа SITOR для защиты полупроводниковых элементов. Эти предохранители обеспечивают защиту силовых полупроводников от разрушения при коротком замыкании даже при полной нагрузке полупроводниковых контакторов.
Альтернативно, при меньшей, чем номинал аппарата нагрузке, также возможна защита стандартными предохранителями или модульными автоматическими выключателями. Такая защита обеспечивается при выборе параметров полупроводниковых коммутационных аппаратов с запасом по мощности.


## Полупроводниковые контакторы

## Общая информация

Схема заказного номера

Позиция номера заказа	$\text { 1. - } 3 .$ $\square$	4.	$5 .$	6.	$7 .$	-	8.	9.	$10 .$	$11 .$	$12 .$	
Полупроводниковые коммутационные аппараты	3 RF											
Полупроводниковые коммутационные аппараты SIRIUS, поколение		$\square$										
Конструктивное исполнение			$\square$									
Номинальный рабочий ток				$\square$	$\square$							
Вид присоединения							$\square$					
Тип коммутации								$\square$				
Количество управляемых фаз									$\square$			
Номинальное питающее напряжение управления										$\square$		
Номинальное рабочее напряжение											$\square$	
Пример зак. номера	3 RF	3	4	1	0	-	1	B	B	0	4	

Примечание
Схема заказного номера служит только для разъяснения и понимания логики заказных номеров.
Для того, чтобы оформить заказ, выберите в "параметрах
выбора" и "данных заказа" необходимый вам номер.

## Преимущества

- Устройства с интегрированным радиатором "готовы к эксплуатации"
- Компактный корпус
- Реверсивные контакторы с интегрированной блокировкой


## Область применения

Применение в двигательных фидерах
Аппараты с различными вариантами присоединений и типами напряжений управления создают универсальные возможности применения полупроводниковых коммутационных аппаратов SIRIUS. Полупроводниковые реле и контакторы SIRIUS могут устанавливаться в фидеры с предохранителем или без них.
Стандарты и Нормы

- IEC 60947-4-3, ГОСТ Р 50030.4.3
- UL 508, CSA для Северной Америки ${ }^{1)}$
- Маркировка CE для Европы
- Допуск C-Tick для Австралии
- Допуск ССС для Китая

1) Внимание! Используйте устройство защиты от перенапряжения; макс. запирающее напряжение 6000 B ;
мин. потребляемая энергия 100 Дж.

| Технические данные |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Тип |  |  |  |

1) Эти аппараты изготавливается как устройства класса А. Применение этих устройств в жилых помещениях может приводить к радиопомехам
2) Для реверсивного контактора: для соблюдения значений необходимо установить ограничитель перенапряжения 3TX7 462-3L (см. каталог IC10, глава "Контакторы и контакторные сборки) между фазами L1 и L3 как можно ближе к реверсивному контактору.
3) При подсоединении двух проводников разного сечения к одной клемме оба сечения должны находиться в указанном диапазоне.

Полупроводниковые коммутационные аппараты для коммутации электродвигателей Полупроводниковые контакторы
Полупроводниковые контакторы 3RF34,
3-фазные

## Oбзор

3RF34-3-фазные полупроводниковые контакторы с 2-фазным управлением, с мгновенной коммутацией, в изолированном корпусе. Предлагаются исполнения в корпусе шириной 45 мм на токи до 5,2 А - и с шириной 90 мм на токи до 16 А, что позволяет коммутировать электродвигатели до 7,5 кВт.

## Технические данные

Тип		3RF34 05-.BB..	3RF34 10-.BB..	3RF34 12-.BB..	3RF34 16-.BB..
Фидеры без предохранителей С авт. выключателями 3RV2, CLASS 10					
Номинальный рабочий ток $I_{\mathrm{AC}-53}{ }^{1)}$ î̀ IEC 60947-4-2   - при $40{ }^{\circ} \mathrm{C}$   - UL/CSA, при $50^{\circ} \mathrm{C}$   - при $60{ }^{\circ} \mathrm{C}$	A A A	$\begin{aligned} & 5,2(4,5) \\ & 4,6(4,0) \\ & 4,2(3,5) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,2 \\ & 8,4 \\ & 7,6 \end{aligned}$	$\begin{aligned} & 12,5 \\ & 11,5 \\ & 10,5 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & 12,5 \end{aligned}$
Потери мощности при $I_{\mathrm{AC}-53}$   - при $40{ }^{\circ} \mathrm{C}$	BT	10 (8)	16	22	28
Защита от короткого замыкания тип координации "1"   при рабочем напряжении $U_{\mathrm{e}}$ до 440 В   - Авт. выключатель, тип   - Ток $I_{\mathrm{q}}$	кA	3RV20 21-1GA10 50	3RV20 21-1JA10   20	3RV20 21-1KA10 5	3RV20 21-4AA10   5

1) Уменьшенные значения в скобках приведены для контакторов смонтированных на автоматических выключателях и при плотном монтаже.

\section*{| Тип |
| :--- |
| Фидеры с предохранителями |}

3RF34 05-.BB. 4 3RF34 05-.BB. 6 3RF34 10-.BB.. $\quad$ 3RF34 12-.BB. 4 3RF34 12-.BB. 6 3RF34 16-.BB..
Фидеры с предохранителями

Номинальный рабочий ток $I_{\text {AC-53 }}$ ī IEC 60947-4-2							
- при $40{ }^{\circ} \mathrm{C}$	A	4		7,8	9,5		11
- UL/CSA, при $50^{\circ} \mathrm{C}$	A	3,6		7	8.5		10
- при $60{ }^{\circ} \mathrm{C}$	A	3,2		6,2	7,6		9
Потери мощности при $I_{\text {AC-53 }}$   - при $40{ }^{\circ} \mathrm{C}$	Bt	7		13	16		18
Минимальный ток нагрузки	A	0,5					
Макс. ток утечки	MA	10					
Расчетная импульсная прочность $I_{\text {tsm }}$	A	200	600	600	1200	1150	1150
$I^{2} t$-значение	$A^{2} \mathrm{C}$	200	1800	1800	7200	6600	6600


Тип		3RF34 ..-. ${ }^{\text {BB. } 4}$	3RF34 ...-BB. 6
Силовая цепь			
Управляемые фазы		2-фазы	2-фазы
Номинальное рабочее напряжение $U_{e}$   - Рабочий диапазон напряжения   - Номинальная частота	$\begin{aligned} & \mathrm{ACB} \\ & \mathrm{AC} \text { B } \\ & \Gamma 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \ldots 480 \\ & 40 \ldots 506 \\ & 50 / 60 \pm 10 \% \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 . . .660 \\ & 50 / 60 \pm 10 \% \end{aligned}$
Номинальное напряжение изоляции $U_{i}$	B	600	600
Расчетная импульсная прочность $U_{\text {imp }}$	кB	6	6
блокирующее напряжения	B	1200	1600
Крутизна подъема напряжения	В/мкс	1000	1000


Тип		3RF34 ..-.BB0.	3RF34 ..-.BB2.
Цепь управления   Род напряжения управления			
Номинальное питающее напряжение   управления $U_{s}$	В	24 по EN 61131-2	
Номинальная частота   питающего напряжения управления	Гц	--	Управление AC
Номинальное питающее напряжение   управления, макс.	В	30	$110 \ldots 230$
Типовые токи	мА	20	$50 / 60 \pm 10 \%$
Напряжение срабатывания	В	15	253
Напряжение отпускания	В	5	15
Время коммутации   - Задержка включения   - Задержка выключения	мс	1	90

Полупроводниковые коммутационные аппараты для коммутации электродвигателей
Полупроводниковые контакторы
Полупроводниковые контакторы 3RF34,
3-фазные
Принципиальные электрические схемы
Номинальное питающее напряжение управления DC


Номинальное питающее напряжение управления AC


Данные для выбора и заказа
Контакторы для коммутации электродвигателей • С мгновенной коммутацией - 2-фазное управление



* Заказывается указанное или кратное данному количество. Листовые цены на 2010/2011 ф.г. Иллюстрации приблизительные


## Принадлежности

	Исполнение	Кл. пост.	Заказной номер	Цена € за ЕП	ЕП (шт., кмпл., м) кмпл., м)	Кол-во уп.*	Уп.
Соединительный модуль для прямого монтажа полупроводникового контактора на авт. выключатель							
3RA29 21-1BA00	Соединительный модуль   Между полупроводниковым контактором 3RF34 и автоматическим выключателем 3RV2 с винтовыми клеммами (для монтажа контактора на авт. выключатель) без дополнительных проводных соединений)   Для авт. выключателей 3RV2 типоразмеров S00/SO	A	Для винтовых клемм   3RA29 21-1BA00	$5,80$	1	1 шт.	101
Адаптер для сборки полупроводниковый контактор - реле защиты от перегрузки							
3RF39 00-0QA88	Соединительный адаптер   для прямой установки реле защиты от перегрузки 3RB3 или реле контроля тока 3RR2 на полупроводниковый контактор с винтовыми клеммами   Адаптер защелкивается на корпусе контактора 3RF34 и входит в крепежные фиксаторы реле защиты от перегрузки 3RB3 или реле контроля тока 3RR2 при прямой установке.	A	3RF39 00-0QA88	1,80	1	1 шт.	101
Изолируюाцие колпачки для надежного удержания в клеммах контакторов проводников сечением до 1 мм² 2							
	Изолирующие колпачки   Применимы для всех устройств SIRIUS с пружинными клеммами		Для пружинных клемм	$0$			
	Вставляются в гнёзда проводников пружинных клемм (на каждый контактор требуется макс. 2 ленты колпачков; отделяются попарно)   Для клемм для проводников с сечением до 2,5 мм 2	B	3RT29 16-4JA02	2,20	1	20 шт.	101
Инструмент для открывания пружинных клемм							
	Отвертка для всех устройств SIRIUS с пружинными клеммами Длина ок. 200 мм, размеры 3,0 мм $\times 0,5$ мм, серый титан/черный, частичная изоляция	A	3RA29 08-1A	10,50	1	1 шт.	101
Маркировочные таблички без надписей							
	Таблички для маркировки устройств ${ }^{1)}$ Для устройств SIRIUS 20 мм $\times 7$ мм, пастельно-бирюзовый	D	3RT19 00-1SB20	21,20	100	340 шт.	101

1) Компьютерную систему создания индивидуальных надписей на табличках для маркировки устройств можно заказать: Murrplastik Systemtechnik GmbH
(см. главу 13, "Приложение" --> "Внешние партнеры").

3-фазные реверсивные полупроводниковые контакторы 3RF34 могут предлагаться как альтернатива традиционными реверсивным сборкам, для которых требуются два контактора.

Реверсивные контакторы 3RF34 экономят до 50 \% габаритной ширины. Приборы в корпусе шириной 45 мм коммутируют двигатели до 2,2 кВт, с шириной 90 мм - до 3 кВт.

Технические данные

Тип		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Фидеры без предохранителей   С авт. выключателами 3RV2, CLASS 10				
Номинальный рабочий ток $\mathrm{I}_{\mathrm{AC}-53}{ }^{1)}$ î̈ IEC 60947-4-2   - при $40{ }^{\circ} \mathrm{C}$   - UL/CSA, при $50^{\circ} \mathrm{C}$   - при $60{ }^{\circ} \mathrm{C}$	A   A   A	$\begin{aligned} & 3,8(3,4) \\ & 3,5(3,1) \\ & 3,2(2,8) \\ & \hline \end{aligned}$	$\begin{array}{lr} 5,4 & (4,8) \\ 5 & (4,3) \\ 4,6 & (3,8) \\ \hline \end{array}$	$\begin{aligned} & 7,4 \\ & 6,8 \\ & 6,2 \\ & \hline \end{aligned}$
Потери мощности при $I_{\mathrm{AC}-53}$   - при $40{ }^{\circ} \mathrm{C}$	Bт	7 (6)	9 (8)	13
Защита от короткого замыкания, тип координации "1"   при рабочем напряжении $U_{\text {e }}$ до 440 В   - Авт. выключатель, тип   - Tok $I_{q}$	кA	3RV20 21-1FA10   50	3RV20 21-1GA10   50	3RV20 21-1JA10 10

1) Уменьшенные значения в скобках приведены для контакторов, смонтированных на автоматических выключателях и при плотном монтаже.

Тип		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Фидеры с предохранителями   С прямым монтажом реле пере				
Номинальный рабочий ток $I_{\text {AC-53 }}$   î̈ IEC 60947-4-2   - при $40{ }^{\circ} \mathrm{C}$   - UL/CSA, при $50^{\circ} \mathrm{C}$   - при $60{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3,8 \\ & 3,5 \\ & 3,2 \end{aligned}$	$\begin{aligned} & 5,4 \\ & 5 \\ & 4,6 \end{aligned}$	$\begin{aligned} & 7,4 \\ & 6,8 \\ & 6,2 \end{aligned}$
Потери мощности при $I_{\mathrm{AC}-53}$   - при $40{ }^{\circ} \mathrm{C}$	Bт	6	8	16
Минимальный ток нагрузки	A	0,5		
Макс. ток утечки	мA	10		
Расчетная импульсная прочность $I_{\text {tsm }}$	A	200	600	
$I^{\mathbf{2}} \boldsymbol{t}$-значение	$\mathrm{A}^{2} \mathrm{c}$	200	1800	


Тип		3RF34 ..-.BD. 4
Силовая цепь		
Управляемые фазы		2-фазы
Номинальное рабочее напряжение $U_{e}{ }^{1)}$	AC B	48 ... 480
- Рабочий диапазон	AC B	$40 . .506$
- Номинальная частота	Гц	50/60 $\pm 10$ \%
Номинальное напряжение изоляции $\boldsymbol{U}_{\mathbf{i}}$	B	600
Расчетная импульсная прочность $U_{\text {imp }}$	кB	6
Блокирующее напряжения	B	1200
Крутизна подъема напряжения	B/мкс	1000

1) Для снижения опасности короткого замыкания из-за перенапряжения рекомендуется установка варистора типа 3TX7 462-3L между фазами L1 и L3 как можно ближе к коммутационному аппарату.

Для защиты силовых полупроводников от короткого замыкания рекомендуется применять специальные защитные аппараты для защиты полупроводниковых элементов.

Тип		3RF34 ..-.BD0.	3RF34 ..-.BD2.
Цепь управления			
Род напряжения управления		Управление DC	Управление AC
Номинальное питающее напряжение управления $U_{s}$	B	24 по EN 61131-2	110 ... 230
Номинальная частота питающего напряжения управления	Гц	--	$50 / 60 \pm 10$ \%
Номинальное питающее напряжение управления, максимальное	B	30	253
Типовые токи	mA	15	10
Напряжение срабатывания	B	15	90
Напряжение отпускания	B	5	< 40
Время коммутации   - Задержка включения   - Задержка выключения   - Время блокировки	MC   MC   MC	$\begin{aligned} & 5 \\ & 5+\text { макс. одна полуволна } \\ & 60 \text {... } 100 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \text { + макс. одна полуволна } \\ & 50 \text {... } 100 \end{aligned}$

Полупроводниковые коммутационные аппараты для коммутации электродвигателей Полупроводниковые контакторы
Полупроводниковые реверсивные
контакторы 3RF34, 3-фазные
Принципиальные электрические схемы
Номинальное питающее напряжение управления DC


Номинальное питающее напряжение управления AC


Параметры выбора и данные заказа
Реверсивные контакторы для коммутации электродвигателей - С мгновенной коммутацией - 2-фазное управление

	Номинальный рабочий ток $I_{\text {е }}$	Номинальная мощность при $I_{e}$ и $U_{\text {e }}$	Номинальное питающее напряжение управления $U_{s}$	Кл. пост.	Винтовые клеммы	(17)	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол-во уп.*	Уп.
	A	$\begin{aligned} & 400 \mathrm{~B} \\ & \mathrm{kBT} \end{aligned}$	B		Заказной номер	Цена € за ЕП			
Номинальное рабочее напряжение $U_{e}$ AC $48 . .480$ B									
	$\begin{aligned} & 3,8 \\ & 5,4 \\ & 7,4 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & \text { DC } 24 \text { по } \\ & \text { EN } 61131-2 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	3RF34 03-1BD04 3RF34 05-1BD04 3RF34 10-1BD04	$\begin{aligned} & \text { 163,- } \\ & \text { 217,- } \\ & \text { 250,- } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { шт. } \\ & 1 \text { шт. } \\ & 1 \text { шт. } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \\ & 101 \end{aligned}$
${ }^{\square}$	3,8	1,5	AC $110 \ldots 230$	B	3RF34 03-1BD24	166,-	1	1 шт.	101
Perycroer	5,4	2,2		B	3RF34 05-1BD24	220,-	1	1 шт.	101
-7ereer	7,4	3,0		B	3RF34 10-1BD24	253,-	1	1 шт.	101

Принадлежности

Исполнение	Кл. пост.	Заказной номер	Цена € за ЕП	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол-во уп.*

Соединительный модуль для прямого монтажа
полупроводникового контактора на авт. выключатель


## Соединительный модуль

между полупроводниковым контактором 3RF34 и автоматическим выключателем 3RV2 с винтовыми клеммами (для монтажа контактора на авт. выключатель) без дополнительных проводных соединений)
$\begin{array}{llllllllll}\text { Для авт. выключателей } 3 R V 2 \text { типоразмеров S00/SO } & \text { A } & \text { 3RA29 21-1BA00 } & \mathbf{5 , 8 0} & 1 & 1 \text { шт. } & 101\end{array}$
3RA29 21-1BA00
Соединительный адаптер: полупроводниковый контактор - реле
защиты от перегрузки


## Соединительный адаптер

Для прямой установки реле защиты от перегрузки 3RB3 или реле контроля тока 3RR2 на полупроводниковый контактор с винтовыми клеммами
$\begin{array}{lllllllllll}\text { Адаптер защелкивается на корпусе контактора 3RF34 и } & \text { A } & \text { 3RF39 00-0QA88 } & \mathbf{1 , 8 0} & 1 & 1 \text { шт. } 101\end{array}$ входит в крепежные фиксаторы реле защиты от перегрузки 3RB3 или реле контроля тока 3RR2 при прямой установке.
Маркировочные таблички без надписей
Таблички для маркировки устройств ${ }^{1)}$
Для устройств SIRIUS
20 мм х 7 мм, пастельно-бирюзовый
21,20
$100 \quad 340$ шт. 101

1) Компьютерную систему создания индивидуальных надписей

на табличках для маркировки устройств можно заказать:
Murrplastik Systemtechnik GmbH (см. главу 13, "Приложение" --> "Внешние
партнеры")


[^0]:    1) Действительно для исполнения"Low Power" 3RF21 ..-.AA..-OKNO
    2) Только для устройств с коммутацией в нулевой точке
[^1]:    1) Типовой ток отображает мощность полупроводникового контактора. Фактически допустимый номинальный рабочий ток $I_{\mathrm{e}}$ может быть меньше, в зависимости от вида подключения и условий монтажа. Требуется снижение номинальных значений параметров (дерейтинг) см. руководство.
[^2]:    Листовые цены на 2010/2011 ф.г. Иллюстрации приблизительные

